Skip to main content
Log in

Protein–protein interaction network of the marine microalga Tetraselmis subcordiformis: prediction and application for starch metabolism analysis

  • Systems Biotechnology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Under stressful conditions, the non-model marine microalga Tetraselmis subcordiformis can accumulate a substantial amount of starch, making it a potential feedstock for the production of fuel ethanol. Investigating the interactions of the enzymes and the regulatory factors involved in starch metabolism will provide potential genetic manipulation targets for optimising the starch productivity of T. subcordiformis. For this reason, the proteome of T. subcordiformis was utilised to predict the first protein–protein interaction (PPI) network for this marine alga based on orthologous interactions, mainly from the general PPI repositories. Different methods were introduced to evaluate the credibility of the predicted interactome, including the confidence value of each PPI pair and Pfam-based and subcellular location-based enrichment analysis. Functional subnetworks analysis suggested that the two enzymes involved in starch metabolism, starch phosphorylase and trehalose-phosphate synthase may be the potential ideal genetic engineering targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113. doi:10.1038/nrg1272

    Article  CAS  PubMed  Google Scholar 

  2. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotech 20:264–271. doi:10.1016/j.copbio.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  3. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protocols 4:484–494. doi:10.1038/nprot.2009.21

    Article  CAS  Google Scholar 

  4. Boxem M, Maliga Z, Klitgord N, Li N, Lemmens I, Mana M, de Lichtervelde L, Mul JD, van de Peut D, Devos M, Simonis N, Yildirim MA, Cokol M, Kao H-L, de Smet A-S, Wang H, Schlaitz A-L, Hao T, Milstein S, Fan C, Tipsword M, Drew K, Galli M, Rhrissorrakrai K, Drechsel D, Koller D, Roth FP, Iakoucheva LM, Dunker AK, Bonneau R, Gunsalus KC, Hill DE, Piano F, Tavernier J, van den Heuvel S, Hyman AA, Vidal M (2008) A protein domain-based interactome network for C. elegans early embryogenesis. Cell 134:534–545. doi:10.1016/j.cell.2008.07.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chatr-aryamontri A, Breitkreutz B-J, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823. doi:10.1093/nar/gks1158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the molecular interaction database. Nucleic Acids Res 35:D572–D574. doi:10.1093/nar/gkl950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chou K-C, Shen H-B (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5:e11335. doi:10.1371/journal.pone.0011335

    Article  PubMed Central  PubMed  Google Scholar 

  8. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi:10.1093/bioinformatics/bti610

    Article  CAS  PubMed  Google Scholar 

  9. Florez A, Park D, Bhak J, Kim B-C, Kuchinsky A, Morris J, Espinosa J, Muskus C (2010) Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinform 11:484. doi:10.1186/1471-2105-11-484

    Article  Google Scholar 

  10. Gandhi TKB, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz J, Bader JS, Pandey A (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38:285–293. doi:10.1038/ng1747

    Article  CAS  PubMed  Google Scholar 

  11. Geisler-Lee J, O’Toole N, Ammar R, Provart NJ, Millar AH, Geisler M (2007) A predicted interactome for Arabidopsis. Plant Physiol 145:317–329. doi:10.1104/pp.107.103465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Guo J, Li H, Chang J-W, Lei Y, Li S, Chen L–L (2013) Prediction and characterization of protein–protein interaction network in Xanthomonas oryzae pv. oryzae PXO99A. Res Microbiol 164:1035–1044. doi:10.1016/j.resmic.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  13. He F, Zhang Y, Chen H, Zhang Z, Peng Y-L (2008) The prediction of protein–protein interaction networks in rice blast fungus. BMC Genom 9:519. doi:10.1186/1471-2164-9-519

    Article  Google Scholar 

  14. Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG, Myers AM (2009) Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol 149:1541–1559. doi:10.1104/pp.109.135293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hennen-Bierwagen TA, Liu F, Marsh RS, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM (2008) Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol 146:1892–1908. doi:10.1104/pp.108.116285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ho C-L, Wu Y, Shen H-b, Provart N, Geisler M (2012) A predicted protein interactome for rice. Rice 5:1–14. doi:10.1186/1939-8433-5-15

    Article  Google Scholar 

  17. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42. doi:10.1038/35075138

    Article  CAS  PubMed  Google Scholar 

  18. Kötting O, Kossmann J, Zeeman SC, Lloyd JR (2010) Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol 13:320–328. doi:10.1016/j.pbi.2010.01.003

    Article  Google Scholar 

  19. Lee DY, Park J–J, Barupal DK, Fiehn O (2012) System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Mol Cell Proteomics 11:973–988. doi:10.1074/mcp.M111.016733

    Article  CAS  PubMed Central  Google Scholar 

  20. Lemeer S, Jopling C, Gouw J, Mohammed S, Heck AJR, Slijper M, den Hertog J (2008) Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Mol Cell Proteomics 7:2176–2187. doi:10.1074/mcp.M800081-MCP200

    Article  CAS  PubMed  Google Scholar 

  21. Liu Z-P, Chen L (2012) Proteome-wide prediction of protein–protein interactions from high-throughput data. Protein Cell 3:508–520. doi:10.1007/s13238-012-2945-1

    Article  CAS  PubMed  Google Scholar 

  22. Östlund G, Schmitt T, Forslund K, Köstler T, Messina DN, Roopra S, Frings O, Sonnhammer ELL (2010) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38:D196–D203. doi:10.1093/nar/gkp931

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P (2013) Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol 40:781–796. doi:10.1007/s10295-013-1281-7

    Article  CAS  PubMed  Google Scholar 

  24. Procházková G, Brányiková I, Zachleder V, Brányik T (2013) Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J Appl Phycol pp 1–19. doi:10.1007/s10811-013-0154-922

  25. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301. doi:10.1093/nar/gkr1065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to cytoscape plugins. Nat Meth 9:1069–1076. doi:10.1038/nmeth.2212

    Article  CAS  Google Scholar 

  27. Smoot ME, Ono K, Ruscheinski J, Wang P, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432. doi:10.1093/bioinformatics/btq675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ (2008) Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol 146:1878–1891. doi:10.1104/pp.108.116244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein–protein interactions. Plant Cell 16:694–708. doi:10.1105/tpc.017400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. van Breukelen B, van den Toorn HWP, Drugan MM, Heck AJR (2009) StatQuant: a post-quantification analysis toolbox for improving quantitative mass spectrometry. Bioinformatics 25:1472–1473. doi:10.1093/bioinformatics/btp181

    Article  PubMed  Google Scholar 

  31. Walhout AJM, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122. doi:10.1126/science.287.5450.116

    Article  CAS  PubMed  Google Scholar 

  32. Xenarios I, Salwínski L, Duan XJ, Higney P, Kim S-M, Eisenberg D (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305. doi:10.1093/nar/30.1.303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Y ao C, Ai J, Cao X, Xue S (2013) Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions. Appl Microbiol Biot 97:6099–6110. doi:10.1007/s00253-013-4983-x

    Article  CAS  Google Scholar 

  34. Yao C, Ai J, Cao X, Xue S (2013) Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis. Biores Technol 146:663–671. doi:10.1016/j.biortech.2013.07.134

    Article  CAS  Google Scholar 

  35. Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresource Technol 118:438–444. doi:10.1016/j.biortech.2012.05.030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Hundred Talent Program of the Chinese Academy of Sciences (No. A1097) and thank Dr. Hongwei Liu and Mr. Keyue Wang for the proteomic data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Xue or Zhilong Xiu.

Additional information

C. Ji and X. Cao have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Supplementary material 2 (XLSX 741 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Cao, X., Yao, C. et al. Protein–protein interaction network of the marine microalga Tetraselmis subcordiformis: prediction and application for starch metabolism analysis. J Ind Microbiol Biotechnol 41, 1287–1296 (2014). https://doi.org/10.1007/s10295-014-1462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1462-z

Keywords

Navigation