Skip to main content
Log in

Tobermolite effects on methane removal activity and microbial community of a lab-scale soil biocover

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Three identical lab-scale biocovers were packed with an engineered soil (BC 1), tobermolite only (BC 2), and a mixture of the soil and tobermolite (BC 3), and were operated at an inlet load of 338–400 g-CH4 m−2 d−1 and a space velocity of 0.12 h−1. The methane removal capacity was 293 ± 47 g-CH4 m−2 d−1 in steady state in the BC 3, which was significantly higher than those in the BC 1 and BC 2 (106 ± 24 and 114 ± 48 g-CH4 m−2 d−1, respectively). Quantitative PCR indicated that bacterial and methanotrophic densities (6.62–6.78 × 107 16S rDNA gene copy number g-dry sample−1 and 1.37–2.23 × 107 pmoA gene copy number g-dry sample−1 in the BC 1 and BC 3, respectively) were significantly higher than those in the BC 2. Ribosomal tag pyrosequencing showed that methanotrophs comprised approximately 60 % of the bacterial community in the BC 2 and BC 3, while they only comprised 43 % in the BC 1. The engineered soil favored the growth of total bacteria including methanotrophs, while the presence of tobermolite enhanced the relative abundance of methanotrophs, resulting in an improved habitat for methanotrophs as well as greater methane mitigation performance in the mixture. Moreover, a batch experiment indicated that the soil and tobermolite mixture could display a stable methane oxidation level over wide temperature (20–40 °C, at least 38 μmol g-dry sample−1 h−1) and pH (5–8, at least 61 μmol g-dry sample−1 h−1) ranges. In conclusion, the soil and tobermolite mixture is promising for methane mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bender M, Conrad R (1994) Methane oxidation activity in various soils and freshwater sediments: occurrence, characteristics, vertical profiles, and distribution on grain size fractions. J Geophys Res Atmos 99(D8):16531–16540. doi:10.1029/94JD00266

    Article  CAS  Google Scholar 

  2. Bender M, Conrad R (1995) Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol Biochem 27(12):1517–1527. doi:10.1016/0038-0717(95)00104-M

    Article  CAS  Google Scholar 

  3. Bogner J, Matthews E (2003) Global methane emissions from landfills: New methodology and annual estimates 1980-1996. Global Biogeochem Cy 17 (2). doi:10.1029/2002gb001913

  4. Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Gao Q, Zhang T, Ahmed MA, Sutamihardja RT, Gregory R, Intergovernmental Panel on Climate Change Working G, III (2008) Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag Res J Int Solid Wastes Public Clean Assoc ISWA 26(1): 11–32

  5. Bogner J, Spokas K, Chanton J, Powelson D (2005) Modeling landfill methane emissions from biocovers: a combined theoretical-empirical approach. In: 05, international solid and hazardous waste symposium, University of Cagliari, Sardinia, CISA

  6. Borjesson G, Sundh I, Tunlid A, Frostegard A, Svensson BH (1998) Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiol Ecol 26(3):207–217

    Article  CAS  Google Scholar 

  7. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37((Database issue)):D141–D145. doi:10.1093/nar/gkn879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Czepiel PM, Mosher B, Crill PM, Harriss RC (1996) Quantifying the effect of oxidation on landfill methane emissions. J Geophys Res Atmos 101(D11):16721–16729. doi:10.1029/96JD00222

    Article  CAS  Google Scholar 

  9. De Visscher A, Schippers M, Van Cleemput O (2001) Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors. Biol Fertil Soils 33(3):231–237. doi:10.1007/s003740000313

    Article  Google Scholar 

  10. du Plessis CA, Strauss JM, Sebapalo EMT, Riedel KHJ (2003) Empirical model for methane oxidation using a composted pine bark biofilter. Fuel 82(11):1359–1365. doi:10.1016/S0016-2361(03)00040-1

    Article  Google Scholar 

  11. Gontcharova V, Youn E, Wolcott RD, Hollister EB, Gentry TJ, Dowd SE (2010) Black box chimera check (B2C2): a windows-based software for batch depletion of chimeras from bacterial 16S rRNA gene datasets. Open Microbiol J 4:47–52. doi:10.2174/1874285801004010047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Humer M, Lechner P (1999) Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag Res J Int Solid Wastes Public Clean Assoc ISWA 17(6):443–452. doi:10.1034/j.1399-3070.1999.00064.x

    Article  CAS  Google Scholar 

  13. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17(3):377–386. doi:10.1101/gr.5969107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jeong SY, Yoon HY, Kim TG, Cho KS (2013) Effect of tobermolite, perlite and polyurethane packing materials on methanotrophic activity. Korean J Microbiol Biotechnol 41(2):215–220

    Article  CAS  Google Scholar 

  15. Kettunen RH, Einola JKM, Rintala JA (2006) Landfill methane oxidation in engineered soil columns at low temperature. Water Air Soil Poll 177(1–4):313–334. doi:10.1007/s11270-006-9176-0

    Article  CAS  Google Scholar 

  16. Kightley D, Nedwell DB, Cooper M (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microbiol 61(2):592–601

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kim TG, Moon KE, Lee EH, Choi SA, Cho KS (2011) Assessing effects of earthworm cast on methanotrophic community in a soil biocover by concurrent use of microarray and quantitative real-time PCR. Appl Soil Ecol 50:52–55. doi:10.1016/j.apsoil.2011.07.011

    Article  Google Scholar 

  18. Kim TG, Moon KE, Yun J, Cho KS (2013) Comparison of RNA- and DNA-based bacterial communities in a lab-scale methane-degrading biocover. Appl Microbiol Biotechnol 97(7):3171–3181. doi:10.1007/s00253-012-4123-z

    CAS  PubMed  Google Scholar 

  19. Kim TG, Yi T, Lee EH, Ryu HW, Cho KS (2012) Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl Microbiol Biotechnol 95(4):1051–1059. doi:10.1007/s00253-011-3728-y

    Article  CAS  PubMed  Google Scholar 

  20. Lee EH, Park H, Cho KS (2010) Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J Hazard Mater 184(1–3):313–320. doi:10.1016/j.jhazmat.2010.08.038

    Article  CAS  PubMed  Google Scholar 

  21. Lozupone C, Hamady M, Knight R (2006) UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform 7:371. doi:10.1186/1471-2105-7-371

    Article  Google Scholar 

  22. Martineau C, Whyte LG, Greer CW (2010) Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. Appl Environ Microbiol 76(17):5773–5784. doi:10.1128/AEM.03094-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. McCarthy KP, Brown KW (1992) Soil gas permeability as influenced by soil gas-filled porosity. Soil Sci Soc Am J 56(4):997–1003. doi:10.2136/sssaj1992.03615995005600040001x

    Article  CAS  Google Scholar 

  24. Mohanty SR, Bodelier PL, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62(1):24–31. doi:10.1111/j.1574-6941.2007.00370.x

    Article  CAS  PubMed  Google Scholar 

  25. Moon LE, Lee SY, Lee SH, Ryu HW, Cho KS (2010) Earthworm cast as a promising filter bed material and its methanotrophic contribution to methane removal. J Hazard Mater 176(1–3):131–138. doi:10.1016/j.jhazmat.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  26. Mor S, De Visscher A, Ravindra K, Dahiya RP, Chandra A, Van Cleemput O (2006) Induction of enhanced methane oxidation in compost: temperature and moisture response. Waste Manag 26(4):381–388. doi:10.1016/j.wasman.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  27. Park S, Lee I, Cho C, Sung K (2008) Effects of earthworm cast and powdered activated carbon on methane removal capacity of landfill cover soils. Chemosphere 70(6):1117–1123

    Article  CAS  PubMed  Google Scholar 

  28. Perdikea K, Mehrotra AK, Hettiaratchi JP (2008) Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills. Waste Manag 28(8):1364–1374. doi:10.1016/j.wasman.2007.06.017

    Article  CAS  PubMed  Google Scholar 

  29. Rahalkar M, Deutzmann J, Schink B, Bussmann I (2009) Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of lake constance (Germany). Appl Environ Microbiol 75(1):119–126. doi:10.1128/AEM.01350-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Reeburgh WS, Whalen SC, Alperin MJ (1993) The role of methylotrophy in the global methane budget. In: Murrel JC, Kelly DP (eds) Microbial growth in C1 compounds. Intercept Limited, Andover, Mass., pp 1–14

  31. Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag Res J Int Solid Wastes Public Clean Assoc ISWA 27(5):409–455. doi:10.1177/0734242x09339325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2012R1A2A2A03046724). This research was also supported by the Basic Science Research Program through NRF funded by the Ministry of Education, Science, and Technology (MEST) (R0A-2008-000-20044-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Suk Cho.

Additional information

K.-E. Moon and E.-H. Lee contributed equally to this work (Co-first authors).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, KE., Lee, EH., Kim, T.G. et al. Tobermolite effects on methane removal activity and microbial community of a lab-scale soil biocover. J Ind Microbiol Biotechnol 41, 1119–1129 (2014). https://doi.org/10.1007/s10295-014-1448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1448-x

Keywords

Navigation