Skip to main content
Log in

Evaluation of liquid and solid culture media for the recovery and enrichment of Burkholderia cenocepacia from distilled water

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Burkholderia cepacia complex (BCC) presence has been the cause of recalls of both sterile and non-sterile pharmaceutical products since these opportunistic pathogens have been implicated to cause infections to susceptible individuals. BCC are ubiquitous in nature, but in pharmaceutical settings the most common source is contaminated water systems. Some strains of BCC, previously described as Pseudomonas cepacia, were not readily detected by standard culture methods. We have explored different strategies to recover and enrich Burkholderia cenocepacia previously cultured in distilled water for 40 days. Enrichment media of varied nutrient concentrations and composition were used, including modified Tryptic Soy Agar or Broth (TSA or TSB), Reasoner’s 2nd Agar or Broth (R2A or R2AB), Brain–Heart Infusion Broth (BHIB), Mueller–Hinton Broth (MHB), and Ashdown’s (ASH) medium. Of the various broth media tested, cell growth was significantly greater in TSB and R2AB than in BHIB, MHB, or ASH broth. TSB and R2AB were also compared for their recovery efficiency. Generally, there was no significant difference between the numbers of B. cenocepacia grown on 15 differently modified TSA and five modified R2A solid media. Overall, however, diluted TSA and TSB media, and R2A and R2AB showed better recovery efficiency than TSA and TSB for inocula containing small numbers of cells. All strains persisted in distilled water for 40 days. Broth media were more effective than solid media for recovery of B. cenocepacia from distilled water. These results may assist in improving detection assays with recovery and enrichment strategies to maximize recovery of these fastidious organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blodgett R (2010) Bacteriological analytical manual Appendix 2: Most probable number from serial dilutions. http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm109656.htm. Accessed 31 Feb 2014

  2. Carson LA, Favero MS, Bond WW, Petersen NJ (1973) Morphological, biochemical, and growth characteristics of Pseudomonas cepacia from distilled water. Appl Microbiol 25:476–483

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Carson LA, Tablan OC, Cusick LB, Jarvis WR, Favero MS, Bland LA (1988) Comparative-evaluation of selective media for isolation of Pseudomonas cepacia from cystic-fibrosis patients and environmental sources. J Clin Microbiol 26:2096–2100

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Drevinek P, Mahenthiralingam E (2010) Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 16:821–830

    Article  CAS  PubMed  Google Scholar 

  5. Gibb AP (1999) Plates are better than broth for recovery of fastidious organisms from some specimen material. J Clin Microbiol 37:875

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Gilbert SE, Rose LJ (2012) Survival and persistence of nonspore-forming biothreat agents in water. Lett Appl Microbiol 55:189–194

    Article  CAS  PubMed  Google Scholar 

  7. Glass MB, Beesley CA, Wilkins PP, Hoffmaster AR (2009) Comparison of four selective media for the isolation of Burkholderia mallei and Burkholderia pseudomallei. Am J Trop Med Hyg 80:1023–1028

    PubMed  Google Scholar 

  8. Hagedorn C, Gould WD, Bardinelli TR, Gustavson DR (1987) A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil. Appl Environ Microbiol 53:2265–2268

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Jannasch HW (1967) Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol Oceanogr 12:264–271

    Article  CAS  Google Scholar 

  10. Jimenez L (2007) Microbial diversity in pharmaceutical product recalls and environments. PDA J Pharm Sci Technol 61:383–399

    CAS  PubMed  Google Scholar 

  11. Kaper JB, Sayler GS, Baldini MM, Colwell RR (1977) Ambient temperature primary nonselective enrichment for isolation of Salmonella spp. from an estuarine environment. Appl Environ Microbiol 33:829–835

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Limmathurotsakul D, Wuthiekanun V, Amornchai P, Wongsuwan G, Day NPJ, Peacock SJ (2012) Effectiveness of a simplified method for isolation of Burkholderia pseudomallei from soil. Appl Environ Microbiol 78:876–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156

    Article  CAS  PubMed  Google Scholar 

  14. Meredith FT, Phillips HK, Reller LB (1997) Clinical utility of broth cultures of cerebrospinal fluid from patients at risk for shunt infections. J Clin Microbiol 35:3109–3111

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Miller SCM, LiPuma JJ, Parke JL (2002) Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl Environ Microbiol 68:3750–3758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Moore RA, Tuanyok A, Woods DE (2008) Survival of Burkholderia pseudomallei in water. BMC Res Notes 1:11–16

    Article  PubMed Central  PubMed  Google Scholar 

  17. Olapade OA, Gao X, Leff LG (2005) Abundance of three bacterial populations in selected streams. Microb Ecol 49:461–467

    Article  CAS  PubMed  Google Scholar 

  18. Pan HM, Feng JH, Cerniglia CE, Chen HZ (2011) Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus. J Ind Microbiol Biotechnol 38:1729–1738

    Article  CAS  PubMed  Google Scholar 

  19. Pumpuang A, Chantratita N, Wikraiphat C, Saiprom N, Day NPJ, Peacock SJ, Wuthiekanun V (2011) Survival of Burkholderia pseudomallei in distilled water for 16 years. Trans R Soc Trop Med Hyg 105:598–600

    Article  PubMed Central  PubMed  Google Scholar 

  20. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Reik R, Spilker T, LiPuma JJ (2005) Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol 43:2926–2928

    Article  PubMed Central  PubMed  Google Scholar 

  22. Robertson J, Levy A, Sagripanti JL, Inglis TJJ (2010) The survival of Burkholderia pseudomallei in liquid media. Am J Trop Med Hyg 82:88–94

    Article  PubMed Central  PubMed  Google Scholar 

  23. Schaffter N, Parriaux A (2002) Pathogenic-bacterial water contamination in mountainous catchments. Water Res 36:131–139

    Article  CAS  PubMed  Google Scholar 

  24. Straka RP, Stokes JL (1957) Rapid destruction of bacteria in commonly used diluents and its elimination. Appl Microbiol 5:21–25

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Torbeck L, Raccasi D, Guilfoyle DE, Friedman RL, Hussong D (2011) Burkholderia cepacia: this decision is overdue. PDA J Pharm Sci Technol 65:535–543

    Article  PubMed  Google Scholar 

  26. Vandamme P, Holmes B, Coenye T, Goris J, Mahenthiralingam E, Lipuma JJ, Govan JR (2003) Burkholderia cenocepacia sp. nov—a new twist to an old story. Res Microbiol 154:91–96

    Article  PubMed  Google Scholar 

  27. Vanlaere E, Coenye T, Samyn E, Van den Plas C, Govan J, de Baets F, de Boeck K, Knoop C, Vandamme P (2005) A novel strategy for the isolation and identification of environmental Burkholderia cepacia complex bacteria. FEMS Microbiol Lett 249:303–307

    Article  CAS  PubMed  Google Scholar 

  28. Vermis K, Brachkova M, Vandamme P, Nelis H (2003) Isolation of Burkholderia cepacia complex genomovars from waters. Syst Appl Microbiol 26:595–600

    Article  CAS  PubMed  Google Scholar 

  29. Vial L, Chapalain A, Groleau MC, Deziel E (2011) The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environ Microbiol 13:1–12

    Article  CAS  PubMed  Google Scholar 

  30. Washington JA (1989) Blood cultures—an overview. Eur J Clin Microbiol Infect Dis 8:803–806

    Article  CAS  PubMed  Google Scholar 

  31. Wuthiekanun V, Smith MD, White NJ (1995) Survival of Burkholderia pseudomallei in the absence of nutrients. Trans R Soc Trop Med Hyg 89:491

    Article  CAS  PubMed  Google Scholar 

  32. Young CS, Burns RG (1993) Detection, survival, and activity of bacteria added to soil. In: Bollag J-M, Stotzky G (eds) Soil biochemistry, vol 8., Marcel Dekker, Inc., New York, USA, pp 1–41

    Google Scholar 

  33. Zanetti F, De Luca G, Stampi S (2000) Recovery of Burkholderia pseudomallei and B. cepacia from drinking water. Int J Food Microbiol 59:67–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. John Sutherland and Sangeeta Khare for reviewing the manuscript. This work was supported in part by an interagency agreement between the US Department of Energy and the US Food and Drug Administration to the summer student research program at the National Center for Toxicological Research administered by the Oak Ridge Institute for Science and Education. The views presented in this article do not necessarily reflect those of the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngbeom Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, Y., Kim, J.M., Ahn, H. et al. Evaluation of liquid and solid culture media for the recovery and enrichment of Burkholderia cenocepacia from distilled water. J Ind Microbiol Biotechnol 41, 1109–1118 (2014). https://doi.org/10.1007/s10295-014-1442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1442-3

Keywords

Navigation