Skip to main content
Log in

The novel Shewanella putrefaciens-infecting bacteriophage Spp001: genome sequence and lytic enzymes

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Shewanella putrefaciens has been identified as a specific spoilage organism commonly found in chilled fresh fish, which contributes to the spoilage of fish products. Limiting S. putrefaciens growth can extend the shelf-life of chilled fish. Endolysins, which are lytic enzymes produced by bacteriophages, have been considered an alternative to control bacterial growth, and have been useful in various applications, including food preservation. We report here, for the first time, the complete genome sequence of a novel phage Spp001, which lyses S. putrefaciens Sp225. The Spp001 genome comprises a 54,789-bp DNA molecule with 67 open reading frames and an average total G + C content of 49.42 %. In silico analysis revealed that the Spp001 open reading frames encode various putative functional proteins, including an endolysin (ORF 62); however, no sequence for genes encoding the holin polypeptides, which work in concert with endolysins, was identified. To examine further the lytic activity of Spp001, we analyzed the lytic enzyme-containing fraction from phages released at the end of the phage lytic cycle in S. putrefaciens, using diffusion and turbidimetric assays. The results show that the partially purified extract contained endolysin, as indicated by a high hydrolytic activity towards bacterial peptidoglycan decrease in the OD590 value by 0.160 in 15 min. The results will allow further investigation of the purification of natural Spp001 endolysin, the extension of Spp001 host range, and the applications of the phage-encoded enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Basir N, Yong AML, Chong VH (2012) Shewanella putrefaciens, a rare cause of splenic abscess. J Microbiol Immunol Infect 45:151–153

    Article  PubMed  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Briers Y, Volckaert G, Cornelissen A, Lagaert S, Michiels CW, Hertveldt K, Lavigne R (2007) Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phi KZ and EL. Mol Microbiol 65:1334–1344

    Article  CAS  PubMed  Google Scholar 

  4. Brink AJ, Van Straten A, van Rensburg AJ (1995) Shewanella (Pseudomonas) putrefaciens bacteremia. Clin Infect Dis 20:1327–1332

    Article  CAS  PubMed  Google Scholar 

  5. Callewaert L, Walmagh M, Michiels CW, Lavigne R (2011) Food applications of bacterial cell wall hydrolases. Curr Opin Biotechnol 22:164–171

    Article  CAS  PubMed  Google Scholar 

  6. Celia LK, Nelson D, Kerr DE (2008) Characterization of a bacteriophage lysin (Ply700) from Streptococcus uberis. Vet Microbiol 130:107–117

    Article  CAS  PubMed  Google Scholar 

  7. Clarke AJ (1993) Extent of peptidoglycan O acetylation in the tribe Proteeae. J Bacteriol 175:4550–4553

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Cof Fey B, Mills S, Coffey A, McAuliffe O, Ross RP (2010) Phage and their lysins as biocontrol agents for food safety applications. Annu Rev Food Sci Technol 1:449–468

    Article  CAS  Google Scholar 

  9. Durdu B, Durdu Y, Gulec N, Islim F, Biçer M (2012) A rare cause of pneumonia: Shewanella putrefaciens. Mikrobiyol Bul 1:117

    Google Scholar 

  10. Fenton M, Ross P, McAuliffe O, O’Mahony J, Coffey A (2010) Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 1:9–16

    Article  PubMed Central  PubMed  Google Scholar 

  11. Fischetti VA, Gotschlich EC, Bernheimer AW (1971) Purification and physical properties of group C streptococcal phage-associated lysin. J Exp Med 133:1105–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496

    Article  CAS  PubMed  Google Scholar 

  13. Fonnesbech B, Frokiaer H, Gram L, Jespersen CM (1993) Production and specificity of poly- and monoclonal antibodies raised against Shewanella putrefaciens. J Appl Bacteriol 74:444–451

    Article  CAS  PubMed  Google Scholar 

  14. Gaeng S, Scherer S, Neve H, Loessner MJ (2000) Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microbiol 66:2951–2958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ganegama AG, Cridge AG, Dias-Wanigasekera BM, Cruz CD, McIntyre L, Liu R, Flint SH, Mutukumira AN (2013) Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm. J Ind Microbiol Biotechnol 40:1105–1116

    Article  Google Scholar 

  16. Gram L, Huss HH (1996) Microbiological spoilage of fish and fish products. Int J Food Microbiol 33:121–137

    Article  CAS  PubMed  Google Scholar 

  17. Kakikawa M, Yokoi KJ, Kimoto H, Nakano M, Kawasaki K, Taketo A, Kodaira K (2002) Molecular analysis of the lysis protein Lys encoded by Lactobacillus plantarum phage phig1e. Gene 299:227–234

    Article  CAS  PubMed  Google Scholar 

  18. Kang HW, Kim JW, Jung TS, Woo GJ (2013) wksl3, a New biocontrol agent for Salmonella enterica serovars enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol 79:1956–1968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69–76

    Article  CAS  PubMed  Google Scholar 

  20. Lopez R, Garcia E, Garcia P (2004) Enzymes for anti-infective therapy: phage lysins. Drug Discov Today Ther Strateg 1:469–474

    Article  CAS  Google Scholar 

  21. Leong J, Mirkazemi M, Kimble F (2000) Shewanella putrefaciens hand infection. Aus New Z J Surg 70:816–817

    Article  CAS  Google Scholar 

  22. Li P, Chen B, Song Z, Song Y, Yang Y, Ma P, Wang H, Ying J, Ren P, Yang L, Gao G, Jin S, Bao Q, Yang H (2012) Bioinformatic analysis of the Acinetobacter baumannii phage AB1 genome. Gene 507:125–134

    Article  CAS  PubMed  Google Scholar 

  23. Lim J, Shin H, Kang D, Ryu S (2012) Characterization of endolysin from a Salmonella Typhimurium-infecting bacteriophage SPN1S. Res Microbiol 163:233–241

    Article  CAS  PubMed  Google Scholar 

  24. Loessner MJ, Wendlinger G, Scherer S (1995) Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol 16:1231–1241

    Article  CAS  PubMed  Google Scholar 

  25. Loessner MJ (2005) Bacteriophage endolysins: current state of research and applications. Curr Opin Microbiol 8:480–487

    Article  CAS  PubMed  Google Scholar 

  26. Lu Z, Breidt F Jr, Fleming HP, Altermann E, Klaenhammer TR (2003) Isolation and characterization of a Lactobacillus plantarum bacteriophage from a cucumber fermentation. Int J Food Microbiol 84:225–235

    Article  CAS  PubMed  Google Scholar 

  27. Meng L, Hong L, Naseem MK, Jingxue W, Linghong K (2013) Effects of bacteriophage on the quality and shelf life of Paralichthys olivaceus during chilled storage. J Sci Food Agric. doi:10.1002/jsfa.6475

    Google Scholar 

  28. Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA 98:4107–4112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Niu YD, Stanford K, Kropinski AM, Ackermann HW, Johnson RP, She YM, Ahmed R, Villegas A, McAllister TA (2012) Genomic, proteomic and physiological characterization of a T5-like bacteriophage for control of Shiga toxin-producing Escherichia coli O157:H7. PLoS One 7:e34585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Pagani L, Lang A, Vedovelli C, Moling O, Rimenti G, Prister AR, Mian P (2003) Soft tissue infection and bacteremia caused by Shewanella putrefaciens. J Clin Microbiol 41:2240–2241

    Article  PubMed Central  PubMed  Google Scholar 

  31. Pastagia M, Euler C, Chahales P, Fuentes-Duculan J, Krueger JG, Fischetti VA (2011) A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother 55:738–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Quan-you G, Xian-shi Y, Zhong X, Jian-jun W (2007) Bacterial flora changes on cultured Pseudosciaena crocea during chilled storage (Chinese). J Fish Sci China 301–308

  33. Raina JL (1981) Purfication of Streptococcus group C bacteriophage lysin. J Bacteriol 145:661–663

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Son B, Yun J, Lim JA, Shin H, Heu S, Ryu S (2012) Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4. BMC Microbiol 12:33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Strating H, Clarke AJ (2001) Differentiation of bacterial autolysins by zymogram analysis. Anal Biochem 291:149–154

    Article  CAS  PubMed  Google Scholar 

  36. Valence F, Lortal S (1995) Zymogram and preliminary characterization of Lactobacillus helveticus autolysins. Appl Environ Microbiol 61:3391–3399

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Walmagh M, Briers Y, Dos Santos SB, Azeredo J, Lavigne R (2012) Characterization of modular bacteriophage endolysins from myoviridae phages OBP, 201 phi 2-1 and PVP-SE1. PLOS One 7

  38. Walmagh M, Boczkowska B, Grymonprez B, Briers Y, Drulis-Kawa Z, Lavigne R (2013) Characterization of five novel endolysins from Gram-negative infecting bacteriophages. Appl Microbiol Biotechnol 97:4369–4375

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Sun JH, Lu CP (2009) Purified recombinant phage lysin LySMP: an extensive spectrum of lytic activity for swine streptococci. Curr Microbiol 58:609–615

    Article  CAS  PubMed  Google Scholar 

  40. Whichard JM, Weigt LA, Borris DJ, Li LL, Zhang Q, Kapur V, Pierson FW, Lingohr EJ, She Y, Kropinski AM (2010) Complete genomic sequence of bacteriophage felix O1. Viruses 2:710–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Yafu X, Hong L, Qian Z, Liangliang T, Shuo Z, Jianxin S, Limin C (2010) Characterization of chicken egg yolk antibodies against dominant spoilage organisms in Paralichthys olivaceus during cold storage (Chinese). Food Sci 23:27

    Google Scholar 

  42. Yoong P, Schuch R, Nelson D, Fischetti VA (2004) Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol 186:4808–4812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Yuan Y, Peng Q, Gao M (2012) Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis. BMC Microbiol 12:297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zimmer M, Vukov N, Scherer S, Loessner MJ (2002) The murein hydrolase of the bacteriophage phi 3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol 68:5311–5317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Funding of China (Grant No. 31071540), the “National Science & Technology Pillar Program (2012BAD28B05)” and the Earmarked Fund for Modern Agroindustry Technology Research System (nycytx-50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Li, M., Lin, H. et al. The novel Shewanella putrefaciens-infecting bacteriophage Spp001: genome sequence and lytic enzymes. J Ind Microbiol Biotechnol 41, 1017–1026 (2014). https://doi.org/10.1007/s10295-014-1438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1438-z

Keywords

Navigation