Skip to main content
Log in

Engineering of Yarrowia lipolytica lipase Lip8p by circular permutation to alter substrate and temperature characteristics

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Applications of lipases are mainly based on their catalytic efficiency and substrate specificity. In this study, circular permutation (CP), an unconventional protein engineering technique, was employed to acquire active mutants of Yarrowia lipolytica lipase Lip8p. A total of 21 mutant lipases exhibited significant shifts in substrate specificity. Cp128, the most active enzyme mutant, showed higher catalytic activity (14.5-fold) and higher affinity (4.6-fold) (decreased K m) to p-nitrophenyl-myristate (pNP-C14) than wild type (WT). Based on the three-dimensional (3D) structure model of the Lip8p, we found that most of the functional mutation occurred in the surface-exposed loop region in close proximity to the lid domain (S112–F122), which implies the steric effect of the lid on lipase activity and substrate specificity. The temperature properties of Cp128 were also investigated. In contrast to the optimal temperature of 45 °C for the WT enzyme, Cp128 exhibited the maximal activity at 37 °C. But it is noteworthy that there is no change in thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aloulou A, Rodriguez JA, Puccinelli D et al (2007) Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochim Biophys Acta 1771:228–237

    Article  PubMed  CAS  Google Scholar 

  2. Bei G, Tao X, Jin PL et al (2011) Improving the catalytic activity of lipase LipK107 from Proteus sp. by site-directed mutagenesis in the lid domain based on computer simulation. J Mol Catal B Enzym 68:286–291

    Article  CAS  Google Scholar 

  3. Brocca S, Secundo F, Ossola M, Alberghina L, Carrea G, Lotti M (2003) Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Sci 12:2312–2319

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Brzozowski AM, Derewenda U, Derewenda ZS (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491–494

    Article  PubMed  CAS  Google Scholar 

  5. Brzozowski DM, Lawson Derewenda S Z (1992) Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochem 31:1532–1541

    Article  Google Scholar 

  6. Butler JS, Mitrea DM, Mitrousis G (2009) Structural and thermodynamic analysis of a conformationally strained circular permutant of barnase. Biochem 48(15):3497–3507

    Article  CAS  Google Scholar 

  7. Cajal Y, Svendsen A, Girona V et al (2000) Interfacial control of lid opening in Thermomyces lanuginose lipase. Biochem 39:413–423

    Article  CAS  Google Scholar 

  8. Charles G, Mohamed A, Mostafa B (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18(3):103–107

    Article  Google Scholar 

  9. Cunningham BA, Hemperly JJ, Hopp TP et al (1979) Favin versus concanavalin A: circularly permuted amino acid sequences. Proc Natl Acad Sci 76:3218–3222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Derewenda ZS, Derewenda U, Dodson GG (1992) The crystal and molecular structure of the Rhizomucor miehei triglyceride lipase at 1.9 Å resolution. J Mol Biol 227:818–839

    Article  PubMed  CAS  Google Scholar 

  11. Fickers P, Fudalej F, Dall MTL et al (2005) Identification and characterization of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol 42(3):264–274

    Article  PubMed  CAS  Google Scholar 

  12. Fickers P, Marty A, Nicaud JM (2011) The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 29(6):632–644

    Article  PubMed  CAS  Google Scholar 

  13. Francesco S, Giacomo C, Chiara T et al (2006) The lid is a structural and functional determinant of lipase activity and selectivity. J Mol Catal B Enzym 39:166–170

    Article  CAS  Google Scholar 

  14. Graf R, Schachman HK (1996) Random circular permutation of genes and expressed polypeptide chains: application of the method to the catalytic chains of aspartate transcarbamoylase. Proc Natl Acad Sci 93:11591–11596

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Hennecke J, Sebbel P, Glockshuber R (1999) Random circular permutation of DsbA reveals segments that are essential for protein folding and stability. J Mol Biol 286:1197–1215

    Article  PubMed  CAS  Google Scholar 

  16. Hisano T, Kasuya K, Tezuka Y et al (2006) The crystal structure of polyhydroxybutyrate depolymerase from Penicillium funiculosum provides insights into the recognition and degradation of biopolyesters. J Mol Biol 356:993–1004

    Article  PubMed  CAS  Google Scholar 

  17. Iwakura M, Nakamura T (1998) Effects of the length of a glycine linker connecting the N- and C-termini of a circularly permuted dihydrofolate reductase. Protein Eng 11:707–713

    Article  PubMed  CAS  Google Scholar 

  18. Liu Z, Li XY, Chi Z et al (2008) Cloning, characterization and expression of the extracellular lipase gene from Aureobasidium pullulans HN2-3 isolated from sea saltern. Antonie Van Leeuwenhoek 94:245–255

    Article  PubMed  CAS  Google Scholar 

  19. Lo WC, Lyu PC (2008) CPSARST: an efficient circular permutation search tool applied to the detection of novel protein structural relationships. Genome Biol 9:R11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Joseph B, Ramteke PW, Thomas J (2008) Cold active microbial lipases: some hot issues and recent developments. Biotech Adv 26:457–470

    Article  CAS  Google Scholar 

  21. Qian Z, Fields CJ, Lutz S (2007) Investigating the structural and functional consequences of circular permutation on lipase B from Candida antarctica. Chem Bio Chem 8:1989–1996

    Article  PubMed  CAS  Google Scholar 

  22. Qian Z, Horton JR, Cheng XD et al (2009) Structural redesign of lipase B from Candida Antarctica by circular permutation and incremental truncation. Mol Biol 393(1):191–201

    Article  CAS  Google Scholar 

  23. Rotticci D, Rotticci-Mulder JC, Denman S et al (2001) Improved enantioselectivity of a lipase by rational protein engineering. Chem Bio Chem 2:766–770

    Article  PubMed  CAS  Google Scholar 

  24. Reitinger S, Yu Y, Wicki J, Ludwiczek M (2010) Circular Permutation of Bacillus circulans Xylanase: a Kinetic and Structural Study. Biochem 49(11):2467–2474

    Article  CAS  Google Scholar 

  25. Ronald T, Piervincenzi Ashutosh Chilkoti (2004) Effect of genetic circular permutation near the active site on the activity and stability of an enzyme inhibitor. Biomol Eng 21:33–42

    Article  CAS  Google Scholar 

  26. Seizaburo S, Masaji I, Harukazu F et al (2005) Creation of Rhizopus oryzae lipase having a unique oxyanion hole by combinatorial mutagenesis in the lid domain. Appl Microbiol Biotechnol 68:779–785

    Article  CAS  Google Scholar 

  27. Simon T, Jens H, Rudi G (1999) Circularly permuted variants of the green fluorescent protein. FEBS Lett 457:283–289

    Article  Google Scholar 

  28. Skjot M, De Maria L, Chatterjee R et al (2004) Understanding the plasticity of the alpha/beta hydrolase fold: lid swapping on the Candida antarctica lipase B results in chimeras with interesting biocatalytic properties. Chem Bio Chem 10:520–527

    Article  CAS  Google Scholar 

  29. Song HT, Jiang ZB, Ma LX (2006) Expression and purification of two lipases from Yarrowia lipolytica AS 2.1216. Protein Expr Purif 47:393–397

    Article  PubMed  CAS  Google Scholar 

  30. Suen WC, Zhang N, Xiao L et al (2004) Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Eng Des Sel 17:133–140

    Article  PubMed  CAS  Google Scholar 

  31. Tougard P, Bizebard T, Ritco-Vonsovici M et al (2002) Structure of a circularly permuted phosphorglycerate kinase. Acta Crystallogr D Biol Crystallogr 58:2018–2023

    Article  PubMed  CAS  Google Scholar 

  32. Weiner J, Bornberg-Bauer E (2006) Evolution of circular permutations in multidomain proteins. Mol Biol Evol 23:734–743

    Article  PubMed  CAS  Google Scholar 

  33. Wyder M, Bachmann HP, Puhan Z (1999) Role of selected yeasts in cheese ripening: an evaluation in foil wrapped raclette cheese. Lebensm Wiss Technol 32:333–343

    Article  CAS  Google Scholar 

  34. Yu XW, Tan NJ, Xiao R et al (2012) Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity. PLoS ONE 7(10):e46388. doi:10.1371/journal.pone.0046388

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Zhang T, Bertelsen E, Benvegnu D et al (1993) Circular permutation of T4 lysozyme. Biochem 32:12311–12318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants 2011AA090703 from the Hi-Tech Research and Development Program of China (863), the Central Government and Public Research Institutes for Basic Research funds (20603022013016) and the China International Science and Technology Cooperation special items (2011DFA32200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, J., Ji, X.F., Wang, F. et al. Engineering of Yarrowia lipolytica lipase Lip8p by circular permutation to alter substrate and temperature characteristics. J Ind Microbiol Biotechnol 41, 757–762 (2014). https://doi.org/10.1007/s10295-014-1428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1428-1

Keywords

Navigation