Skip to main content
Log in

Biotic factor does not limit operational pH in packed-bed bioreactor for ferrous iron biooxidation

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Ferrous ion biooxidation is a process with many promising industrial applications: mainly regeneration of ferric ion as an oxidizing reagent in bioleaching processes and depuration of acid mine drainage. The flooded packed-bed bioreactor (FPB) is the design that leads to the highest biooxidation rate. In this bioreactor, biomass is immobilized in a biofilm that consists of an inorganic matrix, formed by precipitated ferric compounds, in the pores of which cells are attached. This biofilm covers the surface of particles (siliceous stone) that form the bed. The chemical stability of this inorganic matrix defines the widest possible pH range in FPBs. At pH below 1, ferric matrix is dissolved and cells are washed out. At pH higher than 2, ferric ion precipitates massively, greatly hindering mass transfer to cells. Thus, among other parameters, pH is recognised as a key factor for operational control in FPBs. This paper aims to explain the effect of pH on FPB operation, with an emphasis on microbial population behaviour. FPBs seeded with mixed inocula were assayed in the pH range from 2.3 to 0.8 and the microbial population was characterised. The microbial consortium in the bioreactor is modified by pH; at pH above 1.3 Acidithiobacillus ferrooxidans is the dominant microorganism, whereas at pH below 1.3 Leptospirillum ferrooxidans dominates. Inoculum can be adapted to acidity during continuous operation by progressively decreasing the pH of the inlet solution. Thus, in the pH range from 2.3 to 1, the biotic factor does not compromise the bioreactor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FPB:

Flooded packed-bed bioreactor

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

X-GAL:

5-Bromo-4-chloro-indolyl-β-d-galactopyranoside

References

  1. Avila M, Grinbaum B, Carranza F, Mazuelos A, Romero R, Iglesias N, Lozano JL, Perez G, Valiente M (2011) Zinc recovery from an effluent using Ionquest 290: from laboratory scale to pilot plant. Hydrometallurgy 107:63–67

    Article  CAS  Google Scholar 

  2. Brandl H (2001) Microbial leaching of metals. In: Rhem HJ, Reed G (eds) Biotechnology. Wiley, New York, pp 191–224

    Chapter  Google Scholar 

  3. Breed AW, Hansford GS (1999) Effect of pH on ferrous-iron kinetics of Leptospirillum ferrooxidans in continuous culture. Biochem Eng J 3:193–211

    Article  CAS  Google Scholar 

  4. Curutchet G, Pogliani C, Donati E, Tedesco P (1992) Effect of iron (III) and its hydrolysis products (jarosites) on Thiobacillus ferrooxidans growth and on bacterial leaching. Biotechnol Lett 14:329–334

    Article  CAS  Google Scholar 

  5. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  PubMed  CAS  Google Scholar 

  6. Frías C, Carranza F, Sanchez F, Mazuelos A, Frades M, Romero R, Díaz G, Iglesias N (2008) New developments in indirect bioleaching of zinc and lead sulphide concentrates. In: Proceedings of the 6th International Symposium on Hydrometallurgy, pp 497–505

  7. Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto river. Appl Environ Microbiol 69:4853–4865

    Article  PubMed  CAS  Google Scholar 

  8. Jin-yang L, Xiu-xiang T, Pei C (2009) Study of formation of jarosite mediated by Thiobacillus ferrooxidans in 9K medium. Procedia Earth Planet Sci 1:706–712

    Article  Google Scholar 

  9. Johnson BD (2009) Extremophiles: acidic environments. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Elsevier, Amsterdam, pp 107–126

    Chapter  Google Scholar 

  10. Karamanev DG (1991) Model of biofilm structure of Thiobacillus ferrooxidans. J Biotechnol 20:51–64

    Article  CAS  Google Scholar 

  11. Karamanev DG, Nikolov LN (1988) Influence of some physicochemical parameters on bacterial activity of biofilm: ferrous iron oxidation by Thiobacillus ferrooxidans. Biotechnol Bioeng 31:295–299

    Article  PubMed  CAS  Google Scholar 

  12. Karizi E, Alemzadeh I, Vossoughi M (2009) Bio-oxidation of ferrous ions by Acidithiobacillus ferrooxidans in a monolithic bioreactor. J Chem Technol Biotechnol 84:504–510

    Article  Google Scholar 

  13. Kinnunen PHM, Puhakka JA (2004) High-rate ferric sulphate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in a fluidized-bed reactor. Biotechnol Bioeng 85:697–705

    Article  PubMed  CAS  Google Scholar 

  14. Lacey DT, Lawson F (1970) Kinetics of the liquid-phase oxidation of acid ferrous sulphate by the bacterium Thiobacillus ferrooxidans. Biotechnol Bioeng 12:29–50

    Article  CAS  Google Scholar 

  15. Mazuelos A, Carranza F, Palencia I, Romero R (2000) High efficiency reactor for the biooxidation of ferrous iron. Hydrometallurgy 58:269–275

    Article  CAS  Google Scholar 

  16. Mazuelos A, Carranza F, Romero R, Iglesias N, Villalobo E (2010) Operational pH in packed-bed reactors for ferrous ion biooxidation. Hydrometallurgy 104:186–192

    Article  CAS  Google Scholar 

  17. Mazuelos A, Iglesias N, Romero R, Mejías MA, Carranza F (2010) Influence of zinc in ferrous iron biooxidation: biological or chemical Nature? Biochem Eng J 49:235–240

    Article  CAS  Google Scholar 

  18. Mazuelos A, Palencia I, Romero R, Rodríguez R, Carranza F (2001) Ferric iron production in packed bed bioreactor: influence of pH, temperature, particle size, bacterial support material and type of air distributor. Miner Eng 14:507–514

    Article  CAS  Google Scholar 

  19. Mazuelos A, Romero R, Palencia I, Carranza F, Borjas FJ (2002) Oxygen transfer in ferric iron biological production in a packed-bed reactor. Hydrometallurgy 65:15–22

    Article  CAS  Google Scholar 

  20. Nemati M, Harrison STL, Hansford GS, Webb C (1998) Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochem Eng J 1:171–190

    Article  CAS  Google Scholar 

  21. Oren A (2010) Acidophiles. In: Encyclopedia of life sciences, Wiley, Chichester, pp 192–206

  22. Pesic B, Oliver DJ, Wichlacz P (1989) An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Biotechnol Bioeng 33:428–439

    Article  PubMed  CAS  Google Scholar 

  23. Pogliani C, Donati E (2000) Immobilisation of Thiobacillus ferrooxidans: importance of jarosite precipitation. Process Biochem 35:997–1004

    Article  CAS  Google Scholar 

  24. Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 53:315–324

    Article  Google Scholar 

  25. Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why Leptospirillum like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the booxidation of pirites and relates ores. Microbiology 145:5–13

    Article  PubMed  CAS  Google Scholar 

  26. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. CSHL Press, Cold Spring Harbor

    Google Scholar 

  27. Sandstrom A, Mattsson E (2001) Bacterial ferrous iron oxidation of acid mine drainage as pre-treatment for subsequent metal recovery. Int J Min Process 62:309–320

    Article  CAS  Google Scholar 

  28. Segura D (1998) Aislamiento e identificación de bacterias ferrooxidantes y sulfooxidantes del area minera de Riotinto. Doctoral Dissertation Universidad de Sevilla, Seville, Spain

  29. Silverman MP, Lundgren DG (1959) Studies in the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77:642–647

    PubMed  CAS  Google Scholar 

  30. Smith JR, Luthy GR, Middleton AC (1988) Ferrous iron oxidation in acidic solution. J Water Pollut Control Fed 60:518–530

    CAS  Google Scholar 

  31. Torma AE (1977) The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Adv Biochem Eng 6:1–37

    CAS  Google Scholar 

  32. van der Meer T, Kinnunen PHM, Kaksonen AH, Puhakka JA (2007) Effect of fluidized-bed carrier material on biological ferric sulphate generation. Miner Eng 20:782–792

    Article  Google Scholar 

  33. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

E. Villalobo is supported by grant BFU2009-10393 from Ministerio de Ciencia e Innovación and FEDER funds. We are grateful to Teresa Toronjo and Charles Nisbet for help with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Mazuelos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazuelos, A., Moreno, J.M., Carranza, F. et al. Biotic factor does not limit operational pH in packed-bed bioreactor for ferrous iron biooxidation. J Ind Microbiol Biotechnol 39, 1851–1858 (2012). https://doi.org/10.1007/s10295-012-1187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1187-9

Keywords

Navigation