Skip to main content
Log in

Integrated bioprocess for the stereospecific production of linalool oxides from linalool with Corynespora cassiicola DSM 62475

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Linalool oxides are of interest to the flavour industry because of their lavender notes. Corynespora cassiicola DSM 62475 has been identified recently as a production organism because of high stereoselectivity and promising productivities [Mirata et al. (2008) J Agric Food Chem 56(9):3287–3296]. In this work, the stereochemistry of this biotransformation was further investigated. Predominantly (2R)-configured linalool oxide enantiomers were produced from (R)-(−)-linalool. Comparative investigations with racemic linalool suggest that predominantly (2S)-configured derivatives can be expected by using (S)-(+)-configured substrate. Substrate and product inhibited growth even at low concentrations (200 mg l−1). To avoid toxic effects and supply sufficient substrates, a substrate feeding product removal (SFPR) system based on hydrophobic adsorbers was established. Applying SFPR, productivity on the shake flask scale was increased from 80 to 490 mg l−1 day−1. Process optimisation increased productivity to 920 mg l−1 day−1 in a bioreactor with an overall product concentration of 4.600 mg l−1 linalool oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Askari C, Mosandl A (1991) Stereoisomeric flavour compounds. LII: separation and structure elucidation of the furanoid linalool oxide stereoisomers using chirospecific capillary gas chromatography and nuclear magnetic resonance spectroscopy. Phytochem Anal 2(5):211–214

    Article  CAS  Google Scholar 

  2. Bedoukian PZ (1986) Perfumery and flavoring synthetics. Allured, Carol Stream

    Google Scholar 

  3. Berger R (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31(11):1651–1659

    Article  PubMed  CAS  Google Scholar 

  4. Bluemke W, Schrader J (2001) Integrated bioprocess for enhanced production of natural flavors and fragrances by Ceratocystis moniliformis. Biomol Eng 17(4–5):137–142

    Article  PubMed  CAS  Google Scholar 

  5. Bock G, Benda I, Schreier P (1986) Biotransformation of linalool by Botrytis cinerea. J Food Sci 51(3):659–662

    Article  CAS  Google Scholar 

  6. Conceiço GJA, Moran PJS, Rodrigues JA (2003) Highly efficient extractive biocatalysis in the asymmetric reduction of an acyclic enone by the yeast Pichia stipitis. Tetrahedron Asymmetry 14(1):43–45

    Article  Google Scholar 

  7. David L, Veschambre H (1984) Preparation d’oxydes de linalol par bioconversion. Tetrahedron Lett 25(5):543–546

    Article  CAS  Google Scholar 

  8. Demyttenaere JC, Adams A, Vanoverschelde J, De Kimpe N (2001) Biotransformation of (S)-(+)-linalool by Aspergillus niger: an investigation of the culture conditions. J Agric Food Chem 49:5895–5901

    Article  PubMed  CAS  Google Scholar 

  9. Demyttenaere JCR, Willemen HM (1998) Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger. Phytochemistry 47(6):1029–1036

    PubMed  CAS  Google Scholar 

  10. Etschmann MM, Sell D, Schrader J (2005) Production of 2-phenylethanol and 2-phenylethylacetate from l-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnol Bioeng 92(5):624–634

    Article  PubMed  CAS  Google Scholar 

  11. Gatfield IL, Hilmer JM, Betram HJ (2006) A facile enzymatic conversion of linalool to linalool oxide catalysed by the lipase B from Candida antarctica. Anal Bioanal Chem 28(3):139–141

    CAS  Google Scholar 

  12. Griffin S, Wyllie SG, Markham J (1999) Determination of octanol-water partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography. J Chromatogr A 864(2):221–228

    Article  PubMed  CAS  Google Scholar 

  13. Held M, Panke S, Kohler HPE, Feiten HJ, Schmid A, Schmid A, Wubbolts MG, Witholt B (1999) Solid phase extraction for biocatalytic production of toxic compounds. BioWorld 5:2–9

    Google Scholar 

  14. Hilker I, Alphand VÃ, Wohlgemuth R, Furstoss R (2004) Microbial Transformations, 56. Preparative scale asymmetric Baeyer-Villiger oxidation using a highly productive “two-in-one” resin-based in situ SFPR concept. Adv Synth Catal 346(2-3):203–214

    Article  CAS  Google Scholar 

  15. Hilker I, Baldwin C, Alphand V, Furstoss R, Woodley J, Wohlgemuth R (2006) On the influence of oxygen and cell concentration in an SFPR whole cell biocatalytic Baeyer-Villiger oxidation process. Biotechnol Bioeng 93(6):1138–1144

    Article  PubMed  CAS  Google Scholar 

  16. Hilker I, Gutierrez MC, Alphand V, Wohlgemuth R, Furstoss R (2004) Microbiological transformations 57. Facile and efficient resin-based in situ SFPR preparative-scale synthesis of an enantiopure “unexpected” lactone regioisomer via a Baeyer-Villiger oxidation process. Org Lett 6(12):1955–1958

    Article  PubMed  CAS  Google Scholar 

  17. Hilker I, Wohlgemuth R, Alphand V, Furstoss R (2005) Microbial transformations 59: first kilogram scale asymmetric microbial Baeyer–Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy. Biotechnol Bioeng 92(6):702–710

    Article  PubMed  CAS  Google Scholar 

  18. Klein E, Farnow H, Rojahn W (1964) Die Chemie der Linalool-oxide. Liebigs Ann Chem 675(1):73–82

    Article  CAS  Google Scholar 

  19. Krings U, Kelch M, Berger RG (1993) Adsorbents for the recovery of aroma compounds in fermentation processes. J Chem Tech Biotechnol 58:293–299

    CAS  Google Scholar 

  20. Mirata MA, Heerd D, Schrader J (2009) Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem 44(7):764–771

    Article  CAS  Google Scholar 

  21. Mirata MA, Wuest M, Mosandl A, Schrader J (2008) Fungal biotransformation of (±)-linalool. J Agric Food Chem 56(9):3287–3296

    Article  PubMed  CAS  Google Scholar 

  22. Morrish JL, Brennan ET, Dry HC, Daugulis AJ (2008) Enhanced bioproduction of carvone in a two-liquid-phase partitioning bioreactor with a highly hydrophobic biocatalyst. Biotechnol Bioeng 101:768–775

    Article  PubMed  CAS  Google Scholar 

  23. Onken J, Berger RG (1999) Biotransformation of citronellol by the basidiomycete Cystoderma carcharias in an aerated-membrane bioreactor. Appl Microbiol Biotechnol 51(2):158–163

    Article  PubMed  CAS  Google Scholar 

  24. Schewe H, Holtmann D, Schrader J (2009) P450(BM-3)-catalyzed whole-cell biotransformation of alpha-pinene with recombinant Escherichia coli in an aqueous-organic two-phase system. Appl Microbiol Biotechnol 51:158–163

    Google Scholar 

  25. Simpson HD, Alphand VÃ, Furstoss R (2001) Microbiological transformations: 49. Asymmetric biocatalysed Baeyer-Villiger oxidation: improvement using a recombinant Escherichia coli whole cell biocatalyst in the presence of an adsorbent resin. J Mol Catal B Enzym 16(2):101–108

    Article  CAS  Google Scholar 

  26. Straathof AJ (2003) Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product. Biotechnol Prog 19(3):755–762

    Article  PubMed  CAS  Google Scholar 

  27. Surburg H, Panten J (2006) Common fragrance and flavor materials: preparation, properties and uses, 5th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  28. Valadez-Blanco R, Ferreira FC, Jorge RF, Livingston AG (2008) A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration (OSN) membranes. J Memb Sci 317(1–2):50–64

    Article  CAS  Google Scholar 

  29. van der Werf MJ, De Bont JAM, Leak DJ (1997) Opportunities in microbial biotransformation of monoterpenes. In: Scheper T (ed), 55th edn, Springer, Berlin, p 283

  30. Weinert B, Wüst M, Mosandl A, Hanssum H (1998) Stereoisomeric flavour compounds. LXXVIII. Separation and structure elucidation of the pyranoid linalool oxide stereoisomers using common gas chromatographic phases, modified cyclodextrin phases and nuclear magnetic resonance spectroscopy. Phytochem Anal 9(1):10–13

    Article  CAS  Google Scholar 

  31. Wüst M, Mosandl A (1999) Important chiral monoterpenoid ethers in flavours and essential oils—enantioselective analysis and biogenesis. Eur Food Res Technol 209:3–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria M. W. Etschmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bormann, S., Etschmann, M.M.W., Mirata, MA. et al. Integrated bioprocess for the stereospecific production of linalool oxides from linalool with Corynespora cassiicola DSM 62475. J Ind Microbiol Biotechnol 39, 1761–1769 (2012). https://doi.org/10.1007/s10295-012-1181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1181-2

Keywords

Navigation