Skip to main content
Log in

Isolation of an extremely acidophilic and highly efficient strain Acidithiobacillus sp. for chalcopyrite bioleaching

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

An extremely acidophilic sulfur-oxidizing bacterium was isolated from an industrial-scale bioheap of the Zijinshan copper mine and was named ZJJN. A tuft of flagella and a layer of thick capsule outside the cell envelope were clearly observed under transmission electron microscopy (TEM), which might be closely related to the extremely acid-proof capacity of ZJJN cells in the bioleaching system; 16S ribosomal RNA (rRNA) phylogeny showed that the isolated strain was highly homologous to the genera of Acidithiobacillus. The optimum temperature of ZJJN was determined at 30 °C and pH at 1.0. It was capable of growth at even pH 0. Strain ZJJN can utilize reduced sulfur as an energy source but not with organics or ferrous ion. Strain ZJJN was sensitive to all antibiotics with different concentrations; when it showed a certain resistance to different concentrations of Cu2+. In the mixed strains of ZJJN and A. ferrooxidans system (initial pH 1.0), the copper-leaching efficiency was up to 60.1 %, which was far higher than other systems. Scanning electron microscopy (SEM) analysis showed that less jarosite precipitation was produced in the most efficient system. The extremely acidophilic strain ZJJN would be of great potential in the application of chalcopyrite bioleaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amouric A, Brochier-Armanet C, Johnson DB, Bonnefoy V, Hallberg KB (2011) Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology 157:111–122

    Article  PubMed  CAS  Google Scholar 

  2. Bobadilla Fazzini RA, Levican G, Parada P (2011) Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. Appl Microbiol Biotechnol 89:771–780

    Article  PubMed  CAS  Google Scholar 

  3. Bond PL, Druschel GK, Banfield JF (2000) Comparison of AMD microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971

    Article  PubMed  CAS  Google Scholar 

  4. Chen BW, Liu XY, Liu WY, Wen JK (2009) Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate. J Ind Microbiol Biotechnol 36:1409–1416

    Article  CAS  Google Scholar 

  5. DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    Article  PubMed  CAS  Google Scholar 

  6. Feng SS, Xin Y, Yang HL, Zhang L, Kang WL, Xia XL, Wang W (2012) A novel and efficient assay for identification and quantification of Acidithiobacillus ferrooxidans in bioleaching samples. J Ind Microbiol Biotechnol. doi:10.1007/s10295-012-1118-9

    Google Scholar 

  7. Hallberg KB, Gonza′lez-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Article  PubMed  CAS  Google Scholar 

  8. Huang X (2010) Special Audit for Zijin Mining Group Co., Ltd., Chengxing Public Accounting Firm (Fujian), Fuzhou

  9. Kang WL, Yang HL, Feng SS, Zhang L, Leng YW, Wang W (2010) Efficient culture of Acidithiobacillus ferrooxidans and preliminary study on chalcopyrite bioleaching. Ind Microbiol 41:50–56 (in Chinese)

    Google Scholar 

  10. Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Article  PubMed  Google Scholar 

  11. Kinnunen PHM, Puhakka JA (2005) High-rate iron oxidation at below pH 1 and at elevated iron and copper concentrations by a Leptospirillum ferriphilum dominated biofilm. Process Biochem 40:3536–3541

    Article  CAS  Google Scholar 

  12. Leahy MJ, PhilipSchwarz M (2009) Modelling jarosite precipitation in isothermal chalcopyrite bioleaching columns. Hydrometallurgy 98:181–191

    Article  CAS  Google Scholar 

  13. Liu XY, Chen BW, Wen JK, Ruan RM (2010) Leptospirillum forms a minor portion of the population in Zijinshan commercial nonaeration copper bioleaching heap identified by 16S rRNA clone libraries and real-time PCR. Hydrometallurgy 104:399–403

    Article  CAS  Google Scholar 

  14. Ñancucheo I, Johnson DB (2010) Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia. Appl Environ Microbiol 76:461–467

    Article  PubMed  Google Scholar 

  15. Ni YQ, He KY, Bao JT, Yang Y, Wan DS, Li HY (2008) Genomic and phenotypic heterogeneity of Acidithiobacillus spp. strains isolated from diverse habitats in China. FEMS Microbiol Ecol 64:248–259

    Article  PubMed  CAS  Google Scholar 

  16. Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257

    Article  PubMed  CAS  Google Scholar 

  17. Qiu GZ, Fu B, Zhou HB, Liu X, Gao J, Liu FF, Chen XH (2007) Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite. World J Microbiol Biotechnol 23:1217–1225

    Article  Google Scholar 

  18. Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  PubMed  CAS  Google Scholar 

  19. Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522

    Article  PubMed  CAS  Google Scholar 

  20. Tuovinen OH, Kelly DP (1974) Studies on the growth of Thiobacillus ferrooxidans. V: factors affecting growth in liquid culture and the development of colonies on solid media containing inorganic sulfur compounds. Arch Microbiol 98:351–364

    Article  PubMed  CAS  Google Scholar 

  21. Valdes J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9:597

    Article  PubMed  Google Scholar 

  22. Wakeman K, Auvinen H, Johnson DB (2008) Microbiological and geochemical dynamics in simulated heap leaching of a polymetallic sulfide ore. Biotechnol Bioeng 101:739–750

    Article  PubMed  CAS  Google Scholar 

  23. Wang JW, Bai JF, Xu JQ, Liang B (2009) Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J Hazard Mater 172:1100–1105

    Article  PubMed  CAS  Google Scholar 

  24. Watkin ELJ, Keeling SE, Perrot FA, Shiers DW, Palmer ML, Walting HR (2009) Metals tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans. J Ind Microbiol Biotechnol 36:461–465

    Article  PubMed  CAS  Google Scholar 

  25. Watlinga HR, Watkinb EL, Ralphe DE (2010) The resilience and versatility of acidophiles that contribute to the bio-assisted extraction of metals from mineral sulphides. Environ Technol 31:915–933

    Article  PubMed  CAS  Google Scholar 

  26. Xia JL, Peng AA, He H, Yang Y, Liu XD, Qiu GZ (2007) A new strain Acidithiobacillus albertensis BY-05 for bioleaching of metal sulfides ores. T Nonferr Met Soc China 17:168–175

    Article  CAS  Google Scholar 

  27. Xia LX, Yin C, Dai SL, Qiu GZ, Chen XH, Liu JS (2010) Bioleaching of chalcopyrite concentrate using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in a continuous bubble column reactor. J Ind Microbiol Biotechnol 34:289–295

    Article  Google Scholar 

  28. Zhou H, Zhang R, Hu P, Zeng W, Xie Y, Wu C, Qiu G (2008) Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite. J Appl Microbiol 105:591–601

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National High Technology Research and Development Program of China (863 Program) (No. 2012AA021201), the Program of Innovation Projects Plan of Jiangsu Province (No. CXZZ11_0481), Doctor Candidate Foundation of Jiangnan University (No. JUDCF11013), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the 111 Project (No. 111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, S., Yang, H., Xin, Y. et al. Isolation of an extremely acidophilic and highly efficient strain Acidithiobacillus sp. for chalcopyrite bioleaching. J Ind Microbiol Biotechnol 39, 1625–1635 (2012). https://doi.org/10.1007/s10295-012-1174-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1174-1

Keywords

Navigation