Skip to main content

Advertisement

Log in

Degradation kinetics of 4-amino naphthalene-1-sulfonic acid by a biofilm-forming bacterial consortium under carbon and nitrogen limitations

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

By decolorization of azo dyes, caused by reductive cleavage of the azo linkage, toxic or recalcitrant amines are generated. The present study deals with the effect of the inflowing medium composition (C:N ratio) on the kinetic behavior of a bacterial biofilm-forming consortium, able to use as carbon, nitrogen and sulfur source, the molecule of 4-aminonaphthalene-1-sulfonic acid (4ANS), which is one of the most recalcitrant byproducts generated by decolorization of azo dyes. All the experiments were carried out at room temperature in a lab-scale packed-bed biofilm reactor. Because environmental conditions affect the bioreactor performance, two mineral salts media containing 4ANS, with distinct C:N ratios; 0.68 (carbon as the limiting nutrient) and 8.57 (nitrogen as the limiting nutrient) were used to evaluate their effect on 4ANS biodegradation. By HPLC and COD measurements, the 4ANS removal rates and removal efficiencies were determined. The cultivable bacterial strains that compose the consortium were identified by their 16S rDNA gene sequence. With the enrichment technique used, a microbial consortium able to use efficiently 4ANS as the sole carbon source and energy, nitrogen and sulfur, was selected. The bacterial strains that constitute the consortium were isolated and identified. They belong to the following genera: Bacillus, Arthrobacter, Microbacterium, Nocardioides, and Oleomonas. The results obtained with this consortium showed, under nitrogen limitation, a remarkable increase in the 4ANS removal efficiency ηANS, and in the 4ANS volumetric removal rates R V,4ANS, as compared to those obtained under carbon limitation. Differences observed in bioreactor performance after changing the nutrient limitation could be caused by changes in biofilm properties and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abhilash PC, Srivastava S, Singh N (2011) Comparative bioremediation potential of four rhizospheric microbial species against lindane. Chemosphere 82:56–63

    Article  PubMed  CAS  Google Scholar 

  2. Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqba S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–405

    Article  PubMed  CAS  Google Scholar 

  3. Applegate DH, Bryers JD (1991) Effects of carbon and oxygen limitations and calcium concentrations on biofilm removal processes. Biotechnol Bioeng 37:17–25

    Article  PubMed  CAS  Google Scholar 

  4. Babcock RW, Ro KS, Hsieh C–C, Stenstrom MK (1992) Development of an offline enricher-reactor process for activated sludge degradation of hazardous wastes. Water Environ Res 64:782–791

    Article  CAS  Google Scholar 

  5. Barik S, Munnecke DM, Fletcher S (1982) Enzymatic hydrolysis of Malathion and other dithioate pesticides. Biotech Lett 4:795–798

    Article  CAS  Google Scholar 

  6. Beloin C, Roux A, Ghigo J-M (2008) Escherichia coli biofilms. In: Romeo T (ed) Bacterial biofilms. Current topics in microbiology and immunology, vol 322. Springer, Berlin, pp 249–290

    Google Scholar 

  7. Benigni R, Passerini L (2002) Carcinogenicity of the aromatic amines: from structure-activity relationships to mechanisms of action and risk assessment. Mutat Res 511:191–206

    Article  PubMed  CAS  Google Scholar 

  8. Bhadbhade BJ, Sarnik SS, Kanekar PP (2002) Biomineralization of an organophosphorus pesticide, monocrotophos, by soil bacteria. J Appl Microbiol 93:224–234

    Article  PubMed  CAS  Google Scholar 

  9. Bolte JP, Hill DT (1990) A Monod-based model of attached-growth anaerobic fermenters. Biol Wastes 31:275–289

    Article  CAS  Google Scholar 

  10. Booth G (2005) Naphthalene derivatives. In: Ullmann’s Encyclopedia of Industrial Chemistry, Electronic Edition, Wiley-VCH, Weinheim

  11. Cabrera JA, Kurtz A, Sikora RA, Schouten A (2010) Isolation and characterization of fenamiphos degrading bacteria. Biodegradation 21:1017–1027

    Article  PubMed  CAS  Google Scholar 

  12. Durmaz B, Sanin FD (2001) Effect of carbon to nitrogen ratio on the composition of extracellular polymers in activated sludge. Water Sci Technol 44:221–229

    PubMed  CAS  Google Scholar 

  13. Felske A, Engelen B, Nübel U, Backhaus H (1996) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol 62:4162–4167

    PubMed  CAS  Google Scholar 

  14. Fernández N, Díaz EE, Amils R, Sanz JL (2008) Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor. Microbial Ecol 56:121–130

    Article  Google Scholar 

  15. Fichtner S, Lange FT, Schmidt W, Brauch H-J (1995) Determination of aromatic sulfonates in the river Elbe by on-line ion-pair extraction and ion-pair chromatography. Fresen J Anal Chem 353:57–63

    Article  CAS  Google Scholar 

  16. Galindez-Nájera SP, Llamas-Martínez MA, Ruiz-Ordaz N, Juárez-Ramírez C, Mondragón-Parada ME, Ahuatzi-Chacón D, Galíndez-Mayer J (2009) Cyanuric acid biodegradation by a mixed bacterial culture of Agrobacterium tumefaciens and Acinetobacter sp. in a packed-bed biofilm reactor. J Ind Microbiol Biot 36:275–284

    Article  Google Scholar 

  17. Gimeno RA, Marcé RM, Borrull F (2001) Determination of aromatic sulfonates in coastal water by on-line ion-pair solid-phase extraction/ion-pair liquid chromatography with UV detection. Chromatographia 53:22–26

    Article  CAS  Google Scholar 

  18. HACH-Wastewater and biosolids analysis manual (1999) Hach Company. Colorado, USA

    Google Scholar 

  19. Hayase N, Kouno K, Ushio K (2000) Isolation and characterization of Aeromonas sp B-5 capable of decolorizing various dyes. J Biosci Bioeng 90:570–573

    PubMed  CAS  Google Scholar 

  20. Hong Y, Guo J, Zhincheng X, Cuiyun M, Meiying X, Guoping S (2007) Reduction and partial degradation mechanisms of naphthylaminesulfonic azo dye amaranth by Shewanella decolorantionis S12. Appl Microbiol Biot 75:647–654

    Article  CAS  Google Scholar 

  21. Jia D, Li C, Zhao B, Sun S (2010) Studies on the adsorption of 2-naphthalenesulfonic acid on basic resin from effluents. J Chem Eng Data 55:5801–5806

    Article  CAS  Google Scholar 

  22. Jiang X, Pace JL (2006) Microbial biofilms. In: Pace JL, Rupp M, Finch RG (eds) Biofilms, infection, and antimicrobial therapy. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–20

    Google Scholar 

  23. Kadiyala V, Spain JC (1998) A two component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479–2484

    PubMed  CAS  Google Scholar 

  24. Kanamori T, Kanou N, Kusakabe S, Atomi H, Imanaka T (2005) Allophanate hydrolase of Oleomonas sagaranensis involved in an ATP-dependent degradation pathway specific to urea. FEMS Microbiol Lett 245:61–65

    Article  PubMed  CAS  Google Scholar 

  25. Kanamori T, Rashid N, Morikawa M, Atomi H, Imanaka T (2002) Oleomonas sagaranensis gen. nov., sp. nov., represents a novel genus in the α-Proteobacteria. FEMS Microbiol Lett 217:255–261

    PubMed  CAS  Google Scholar 

  26. Karn SKr, Chakrabarty SK, Reddy MS (2010) Characterization of pentachlorophenol degrading Bacillus strains from secondary pulp-and-paper-industry sludge. Int Biodeter Biodegr 64:609–613

    Article  CAS  Google Scholar 

  27. Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P (2002) Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol Bioeng 80:289–296

    Article  PubMed  CAS  Google Scholar 

  28. Lange FT, Brauch H-J (2006) Analysis, occurrence, and fate of aromatic sulfonates in the Rhine and its tributaries. In: Knepper TP (ed) The Rhine. The handbook of environmental chemistry, vol 5L. Springer, Berlin, pp 185–210

    Google Scholar 

  29. Li W, Zhang Y, Wang MD, Shi Y (2005) Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol Lett 247:45–50

    Article  PubMed  CAS  Google Scholar 

  30. Manuzon MY, Wang HH (2007) Mixed culture biofilms. In: Blaschek HP, Wang HH, Agle ME (eds) Biofilms in the food environment. Blackwell Publishing and the Institute of Food Technologists, Ames Iowa, pp 105–126

    Google Scholar 

  31. Melling JT (1977) Regulation in enzyme synthesis in continuous culture. In: Wiseman A (ed) Topics in enzyme and fermentation biotechnology, vol 1. Ellis Horwood Ltd., Sussex England, pp 10–42

    Google Scholar 

  32. Moran AC, Olivera N, Commendatore M, Esteves JL, Sineriz F (2000) Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9. Biodegradation 11:65–71

    Article  PubMed  CAS  Google Scholar 

  33. Navarro-Ortega A, Barceló D (2011) Persistent organic pollutants in water, sediments, and biota in the Ebro River Basin. In: Barceló D, Petrovic M (eds) The Ebro River Basin. The handbook of environmental chemistry, vol 13. Springer, Berlin, pp 139–166

    Chapter  Google Scholar 

  34. Nelson ML, Yaron B, Nye PH (1982) Biologically induced hydrolysis of parathion in soil: kinetics and modeling. Soil Biol Biochem 14:223–228

    Article  CAS  Google Scholar 

  35. Nicolella C, Zolezzi M, Furfaro M, Cattaneo C, Rovatti M (2007) High-rate degradation of aromatic sulfonates in a biofilm airlift suspension reactor. Ind Eng Chem Res 46:6674–6680

    Article  CAS  Google Scholar 

  36. Ohshiro K, Kakuta T, Sakai T, Hidenori H, Hoshino T, Uchiyama T (1996) Biodegradation of organophosphorus insecticides by bacterial isolated from turf green soil. J Ferment Bioeng 82:299–305

    Article  CAS  Google Scholar 

  37. Oturkar CC, Nemade HN, Mulik PM, Patole MS, Hawaldar RR, Gawai KR (2011) Mechanistic investigation of decolorization and degradation of Reactive Red 120 by Bacillus lentus BI377. Bioresource Technol 102:758–764

    Article  CAS  Google Scholar 

  38. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeter Biodegr 59:73–84

    Article  CAS  Google Scholar 

  39. Pereira R, Pereira L, van der Zee FP, Alves MM (2011) Fate of aniline and sulfanilic acid in UASB bioreactors under denitrifying conditions. Water Res 45:191–200

    Article  PubMed  CAS  Google Scholar 

  40. Pipke R, Amrhein N (1988) Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilises the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl Environ Microbiol 54:2868–2870

    PubMed  CAS  Google Scholar 

  41. Pipke R, Amrhein N, Jacob GS, Kishore GM, Schaefer J (1987) Metabolism of glyphosate in an Arthrobacter sp. GLP-1. Eur J Biochem 165:267–273

    Article  PubMed  CAS  Google Scholar 

  42. Quinn JP, Peden JMM, Dick RE (1989) Carbon-phosphorus bond cleavage by Gram-positive and Gram-negative soil bacteria. Appl Microbiol Biot 31:283–287

    Article  CAS  Google Scholar 

  43. Rangaswamy V, Venkateswaralu K (1992) Degradation of selected insecticides by bacteria isolated from soil. B Environ Contam Tox 49:797–804

    Article  CAS  Google Scholar 

  44. Ravera M, Musso D, Gosetti F, Cassino C, Gamalero E, Osella D (2010) Oxidative degradation of 1,5-naphthalenedisulfonic acid in aqueous solutions by UV-photolysis in the absence and presence of H2O2. Chemosphere 79:144–148

    Article  PubMed  CAS  Google Scholar 

  45. Relman DA (1993) Universal bacterial 16S rDNA amplification and sequencing. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, Washington, pp 489–495

    Google Scholar 

  46. Reysenbach A-L, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2211

    PubMed  CAS  Google Scholar 

  47. Rochex A, Lebault J-M (2007) Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine. Water Res 41:2885–2892

    Article  PubMed  CAS  Google Scholar 

  48. Rupp CJ, Fux CA, Stoodley P (2005) Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol 71:2175–2178

    Article  PubMed  CAS  Google Scholar 

  49. Santos V, Diogo J, Pacheco MJ, Ciríaco L, Morão A, Lopes A (2010) Electrochemical degradation of sulfonated amines on SI/BDD electrodes. Chemosphere 79:637–645

    Article  PubMed  CAS  Google Scholar 

  50. Saratale RG, Saratale GD, Chang JS, Govindwa SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    Article  CAS  Google Scholar 

  51. Sauer K, Cullen MC, Rickard AH, Zeef LAH, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326

    Article  PubMed  CAS  Google Scholar 

  52. Schembri MA, Kjærgaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    Article  PubMed  CAS  Google Scholar 

  53. Schippers A, Schumann P, Spröer C (2005) Nocardioides oleivorans sp. nov., a novel crude-oil-degrading bacterium. Int J Syst Evol Microbiol 55:1501–1504

    Article  PubMed  CAS  Google Scholar 

  54. Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Can J Microbiol 35:1105–1110

    Article  CAS  Google Scholar 

  55. Shiyun Z, Xuesong Z, Daotang L (2002) Ozonation of naphthalene sulfonic acids in aqueous solutions. Part I: elimination of COD, TOC and increase of their biodegradability. Water Res 36:1237–1243

    Article  PubMed  Google Scholar 

  56. Singh S, Singh P, Awasthi SK, Pandey A, Iyengar L (2008) Mineralization of 2-aminobenzenesulfonate by a bacterial consortium. World J Microbiol Biot 24:841–847

    Article  CAS  Google Scholar 

  57. Slater JH, Lovatt D (1984) Biodegradation and the significance of microbial communities. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, NY and Basel, pp 439–485

    Google Scholar 

  58. Song Z, Edwards S, Burns R (2005) Biodegradation of naphthalene-2-sulfonic acid present in tannery wastewater by bacterial isolates Arthrobacter sp 2AC and Comamonas sp. 4BC. Biodegradation 16:237–252

    Article  PubMed  Google Scholar 

  59. Szabó-Bárdos E, Markovics O, Horváth O, Töro N, Kiss G (2011) Photocatalytic degradation of benzenesulfonate on colloidal titanium dioxide. Water Res 45:1617–1628

    Article  PubMed  Google Scholar 

  60. Tait MI, Sutherland IW, Clarkesturman AJ (1986) Effect of growth conditions on the production, composition and viscosity of Xanthomonas campestris exopolysaccharide. J Gen Microbiol 132:1483–1492

    CAS  Google Scholar 

  61. Tan NCG, van Leeuwen A, van Voorthuizen EM, Slenders P, Prenafeta-Boldu FX, Temmink H, Lettinga G, Field JA (2005) Fate and biodegradability of sulfonated aromatic amines. Biodegradation 16:527–537

    Article  PubMed  CAS  Google Scholar 

  62. Thys RCS, Lucas FS, Riffel A, Heeb P, Brandelli A (2004) Characterization of a protease of a feather-degrading Microbacterium species. Lett Appl Microbiol 39:181–186

    Article  PubMed  CAS  Google Scholar 

  63. Usha MS, Sanjay MK, Gaddad SM, Shivannavar CT (2010) Degradation of H-acid by free and immobilized cells of Alcaligenes latus. Brazilian J Microbiol 41:931–945. Online at http://www.scielo.br/pdf/bjm/v41n4/12.pdf, consulted 5 Nov 2011

  64. Vrede K, Heldal M, Norland S, Bratbak G (2002) Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Appl Microbiol Biot 68:2965–2971

    CAS  Google Scholar 

  65. Zerbinati O, Salomone S, Ostacoli G (1994) Sulfonated derivatives of naphthalene in water samples of an Italian river. Chemosphere 29:2639–2643

    Article  CAS  Google Scholar 

  66. Zerbinati O, Vincenti M, Pittavino S, Gennaro MC (1997) Fate of aromatic sulfonates in fluvial environment. Chemosphere 35:2295–2305

    Article  CAS  Google Scholar 

  67. Zissi US, Kornaros ME, Lyberatos GC (1999) Kinetics of p-Aminoazobenzene degradation by Bacillus subtilis under denitrifying conditions. Water Environ Res 71:323–331

    Article  CAS  Google Scholar 

  68. Zurrer D, Cook AM, Leisenger T (1987) Microbial desulfonation of substituted naphthalene sulphonic acids and benzene sulphonic acids. Appl Microbiol Biot 53:1459–1463

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional (SIP-IPN), and Comisión de Fomento de las Actividades Académicas (COFAA-IPN) for fellowships to C. Juárez-Ramírez, N. Ruiz-Ordaz, and J. Galíndez-Mayer, to SIP-IPN for financial support of R. V-G, and to the Consejo Nacional de Ciencia y Tecnología for a graduate scholarship to O. R-M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Galíndez-Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juárez-Ramírez, C., Velázquez-García, R., Ruiz-Ordaz, N. et al. Degradation kinetics of 4-amino naphthalene-1-sulfonic acid by a biofilm-forming bacterial consortium under carbon and nitrogen limitations. J Ind Microbiol Biotechnol 39, 1169–1177 (2012). https://doi.org/10.1007/s10295-012-1123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1123-z

Keywords

Navigation