Skip to main content
Log in

Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We used the autodisplay system AIDA-I, which belongs to the type V secretion system (TVSS), to display the β-glucosidase BglC from Thermobifida fusca on the outer membrane of the ethanologenic Escherichia coli strain MS04 (MG1655 ∆pflB, ∆adhE, ∆frdA, ∆xylFGH, ∆ldhA, PpflB::pdc Zm -adhB Zm ). MS04 that was transformed with the plasmid pAIDABglCRHis showed cellobiase activity (171 U/gCDW) and fermented 40 g/l cellobiose in mineral medium in 60 h with an ethanol yield of 81 % of the theoretical maximum. Whole-cell protease treatment, SDS-PAGE, and Western-blot analysis demonstrated that BglC was attached to the external surface of the outer membrane of MS04. When attached to the cells, BglC showed 93.3 % relative activity in the presence of 40 g/l ethanol and retained 100 % of its activity following 2 days of incubation at 37 °C with the same ethanol concentration. This study shows the potential of the TVSS (AIDA-I) and BglC as tools for the production of lignocellulosic bio-commodities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amann E, Ochs B, Abel KJ (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69(2):301–315

    Article  PubMed  CAS  Google Scholar 

  2. Amorim HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91(5):1267–1275

    Article  PubMed  CAS  Google Scholar 

  3. Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28(3):308–324

    Article  PubMed  Google Scholar 

  4. Beall DS, Ohta K, Ingram LO (1991) Parametric studies of ethanol production form xylose and other sugars by recombinant Escherichia coli. Biotechnol Bioeng 38(3):296–303

    Article  PubMed  CAS  Google Scholar 

  5. Dautin N, Bernstein HD (2007) Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 61:89–112

    Article  PubMed  CAS  Google Scholar 

  6. Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86(1–9):181–196

    Article  PubMed  Google Scholar 

  7. Edwards MC, Henriksen ED, Yomano LP, Gardner BC, Sharma LN, Ingram LO, Peterson JD (2011) Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass. Appl Environ Microbiol 77(15):5184–5191

    Article  PubMed  CAS  Google Scholar 

  8. Ferchak JD, Pye EK (1983) Effect of glucose and other sugars on the β-1,4-glucosidase activity of Thermomonospora fusca. Biotechnol Bioeng 25(12):2855–2864

    Article  PubMed  CAS  Google Scholar 

  9. Fernandez-Sandoval MT, Gosset G, Martinez A (2010) Ethanol production by ethanologenic Escherichia coli using xylose-glucose-acetate mixtures in batch and continuous cultures. 32nd symposium on biotechnology for fuels and chemicals. Society for Industrial Microbiology. Clearwater Beach, Florida, USA

  10. Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22(3):312–319

    Article  PubMed  CAS  Google Scholar 

  11. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556

    Article  PubMed  Google Scholar 

  12. Huerta-Beristain G, Utrilla J, Hernández-Chávez G, Bolívar F, Gosset G, Martinez A (2008) Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 is limited by pyruvate decarboxylase. J Mol Microbiol Biotechnol 15(1):55–64

    Article  PubMed  CAS  Google Scholar 

  13. Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15(5):855–866

    Article  PubMed  CAS  Google Scholar 

  14. Jose J, Meyer TF (2007) The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 71(4):600–619

    Article  PubMed  CAS  Google Scholar 

  15. Jose J, Park M, Pyun JC (2010) Escherichia coli outer membrane with autodisplayed Z-domain as a molecular recognition layer of SPR biosensor. Biosens Bioelectron 25(5):1225–1228

    Article  PubMed  CAS  Google Scholar 

  16. Jose J, Zangen D (2005) Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem Biophys Res Commun 333(4):1218–1226

    Article  PubMed  CAS  Google Scholar 

  17. Kaessler A, Olgen S, Jose J (2011) Autodisplay of catalytically active human hyaluronidase hPH-20 and testing of enzyme inhibitors. Eur J Pharm Sc 42(1–2):138–147

    Article  CAS  Google Scholar 

  18. la Grange DC, den Haan R, van Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. App Microbiol Biotechnol 87(4):1195–1208

    Article  CAS  Google Scholar 

  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  20. Lattemann CT, Maurer J, Gerland E, Meyer TF (2000) Autodisplay: functional display of active β-lactamase on the surface of Escherichia coli by the AIDA-I autotransporter. J Bacteriol 182(13):3726–3733

    Article  PubMed  CAS  Google Scholar 

  21. Martinez A, York SW, Yomano LP, Pineda LP, Davis FC, Shelton JC, Ingram LO (1999) Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli. Biotechnol Prog 15(5):891–897

    Article  PubMed  CAS  Google Scholar 

  22. Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29(3):397–404

    Article  PubMed  CAS  Google Scholar 

  23. Martínez Jiménez A, Gosset Lagarda G, Hernández Chávez G, Huerta Beristain G, Trujillo Martínez B, Utrilla Carreri J (2010) Strains of Escherichia coli modified by metabolic engineering to produce chemical compounds from hydrolyzed lignocellulose, pentoses, hexoses and other carbon sources. WO Patent WO2011/016706A2

  24. Maurer J, Jose J, Meyer TF (1997) Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J Bacteriol 179(3):794–804

    PubMed  CAS  Google Scholar 

  25. Maurer J, Jose J, Meyer TF (1999) Characterization of the essential transport function of the AIDA-I autotransporter and evidence supporting structural predictions. J Bacteriol 181(22):7014–7020

    PubMed  CAS  Google Scholar 

  26. McBride JE, Zietsman JJ, Van Zyl WH, Lynd LR (2005) Utilization of cellobiose by recombinant β-glucosidase-expressing strains of Saccharomyces cerevisiae: characterization and evaluation of the sufficiency of expression. Enzyme Microb Technol 37(1):93–101

    Article  CAS  Google Scholar 

  27. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  28. Moniruzzaman M, Lai X, York SW, Ingram LO (1997) Isolation and molecular characterization of high-performance cellobiose-fermenting spontaneous mutants of ethanologenic Escherichia coli KO11 containing the Klebsiella oxytoca casAB operon. Appl Environ Microbiol 63(12):4633–4637

    PubMed  CAS  Google Scholar 

  29. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  PubMed  CAS  Google Scholar 

  30. Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, Huerta-Beristain G, Gosset G, Martinez A (2010) Engineering the Escherichia coli fermentative metabolism. Adv Biochem Eng Biotechnol 121:71–107

    PubMed  CAS  Google Scholar 

  31. Orencio-Trejo M, Flores N, Escalante A, Hernández-Chávez G, Bolívar F, Gosset G, Martinez A (2008) Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities. Biotechnol Biofuels 1(1):8

    Article  PubMed  Google Scholar 

  32. Puente JL, Juárez D, Bobadilla M, Arias CF, Calva E (1995) The Salmonella ompC gene: structure and use as a carrier for heterologous sequences. Gene 156(1):1–9

    Article  PubMed  CAS  Google Scholar 

  33. Ryu S, Karim MN (2011) A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. App Microbiol Biotechnol 91(3):529–542

    Article  CAS  Google Scholar 

  34. Sambrook J, Rusell D (2001) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  35. Somerville C (2007) Biofuels. Curr Biol 17(4):R115–R119

    Article  PubMed  CAS  Google Scholar 

  36. Spiridonov NA, Wilson DB (2001) Cloning and biochemical characterization of BglC, a β-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr Microbiol 42(4):295–301

    PubMed  CAS  Google Scholar 

  37. Tanaka T, Kawabata H, Ogino C, Kondo A (2011) Creation of a cellooligosaccharide-assimilating Escherichia coli strain by displaying active beta-glucosidase on the cell surface via a novel anchor protein. Appl Environ Microbiol 77(17):6265–6270

    Article  PubMed  CAS  Google Scholar 

  38. Vinuselvi P, Lee SK (2011) Engineering Escherichia coli for efficient cellobiose utilization. Appl Microbiol Biotechnol 92(1):125–132

    Article  PubMed  CAS  Google Scholar 

  39. Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30(12):2097–2103

    Article  PubMed  CAS  Google Scholar 

  40. Zhou S, Yomano LP, Saleh AZ, Davis FC, Aldrich HC, Ingram LO (1999) Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (encoded by celZ) in Escherichia coli B. Appl Environ Microbiol 65(6):2439–2445

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Thomas F. Meyer from Max Planck Institute (Infection Biology) for providing pJM7 plasmid, Dr. David B. Wilson (Department of Molecular Biology and Genetics, Cornell University) for providing pNS6 plasmid, and Luz María Martínez, Mercedes Enzaldo, Georgina Hernández, Omar Arriaga and Shirley Ainsworth for technical support. This work was supported by the Mexican Council of Science and Technology (CONACyT) technological innovation grants: PETRAMIN 2010-13879, 2011-154298, and 2012-184417; and from the Universidad Nacional Autónoma de México: grant DGAPA/PAPIIT/UNAM IT200312-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Gutiérrez, I., Oropeza, R., Gosset, G. et al. Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. J Ind Microbiol Biotechnol 39, 1141–1152 (2012). https://doi.org/10.1007/s10295-012-1122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1122-0

Keywords

Navigation