Skip to main content
Log in

Lasiodiplodan, an exocellular (1→6)-β-d-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Lasiodiplodan, an exopolysaccharide of the (1→6)-β-d-glucan type, is produced by Lasiodiplodia theobromae MMPI when grown under submerged culture on glucose. The objective of this study was to evaluate lasiodiplodan production by examining the effects of carbon (glucose, fructose, maltose, sucrose) and nitrogen sources (KNO3, (NH4)2SO4, urea, yeast extract, peptone), its production in shake flasks compared to a stirred-tank bioreactor, and to study the rheology of lasiodiplodan, and lasiodiplodan’s anti-proliferative effect on breast cancer MCF-7 cells. Although glucose (2.05 ± 0.05 g L−1), maltose (2.08 ± 0.04 g L−1) and yeast extract (2.46 ± 0.06 g L−1) produced the highest amounts of lasiodiplodan, urea as N source resulted in more lasiodiplodan per unit biomass than yeast extract (0.74 ± 0.006 vs. 0.22 ± 0.008 g g−1). A comparison of the fermentative parameters of L. theobromae MMPI in shake flasks and a stirred-tank bioreactor at 120 h on glucose as carbon source showed maximum lasiodiplodan production in agitated flasks (7.01 ± 0.07 g L−1) with a specific yield of 0.25 ± 0.57 g g−1 and a volumetric productivity of 0.06 ± 0.001 g L−1 h−1. A factorial 22 statistical design developed to evaluate the effect of glucose concentration (20–60 g L−1) and impeller speed (100–200 rpm) on lasiodiplodan production in the bioreactor showed the highest production (6.32 g L−1) at 72 h. Lasiodiplodan presented pseudoplastic behaviour, and the apparent viscosity increased at 60°C in the presence of CaCl2. Anti-proliferative activity of lasiodiplodan was demonstrated in MCF-7 cells, which was time- and dose-dependent with an IC50 of 100 μg lasiodiplodan mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bandaiphet C, Prasertsan P (2006) Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, k La in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydr Polym 66:216–228. doi:10.1016/j.carbpol.2006.03.004

    Article  CAS  Google Scholar 

  2. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Ann Rev 11:127–152. doi:10.1016/S1387-2656(05)11004-7

    Article  CAS  Google Scholar 

  3. Bohn JA, Bemiller JN (1995) (1→3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 28:3–14. doi:10.1016/0144-8617(95)00076-3

    Article  CAS  Google Scholar 

  4. Bondiovani RAM, Silveira JLM, Penna ALB, Dekker RFH, Barbosa AM, Corradi da Silva ML (2009) Rheological characterization of botryosphaerans produced by B. rhodina MAMB-05 in carbon sources of glucose, sucrose and fructose. Braz J Food Technol 12:53–59. doi:10.4260/BJFT2009800900008

    Article  Google Scholar 

  5. Chen J, Raymond K (2008) Beta-glucans in the treatment of diabetes and associated cardiovascular risks. Vasc Health Risk Manag 4:1265–1272. doi:10.2147/VHRM.S3803

    PubMed  CAS  Google Scholar 

  6. Cho EJ, Oh JY, Chang HY, Yun JW (2006) Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J Biotechnol 127:129–140. doi:10.1016/j.jbiotec.2006.06.013

    Article  PubMed  CAS  Google Scholar 

  7. Corradi da Silva ML, Fukuda EK, Vasconcelos AFD, Dekker RFH, Matias AC, Monteiro NK, Cardoso MS, Barbosa AM, Silveira JLM, Sassaki GL, Carbonero ER (2008) Structural characterization of the cell wall d-glucans from the mycelium of Botryosphaeria rhodina MAMB-05. Carbohydr Res 343:793–798. doi:10.1016/j.carres.2007.12.021

    Article  CAS  Google Scholar 

  8. Fan L, Soccol AT, Pandey A, Soccol CR (2007) Effect of nutritional and environmental conditions on the production of exo-oligosaccharide of Agaricus brasiliensis by submerged fermentation and its antitumor activity. LWT Food Sci Technol 40:30–35. doi:10.1016/j.lwt.2005.09.006

    Article  CAS  Google Scholar 

  9. Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343. doi:10.1128/MMBR.00038-05

    Article  PubMed  CAS  Google Scholar 

  10. Narui T, Sawada K, Culberson CF, Culberson WL, Shibata S (1999) Pustulan-type polysaccharides as a constant character of the Umbilicariaceae (lichenized Ascomycotina). Bryologist 102:80–85. URL: http://www.jstor.org/stable/3244464

    Google Scholar 

  11. Novak M, Vetvicka V (2008) β-Glucans, history, and the present: immunomodulatory aspects and mechanism of action. J Immunotoxicol 5:47–57. doi:10.1080/15476910802019045

    Article  PubMed  CAS  Google Scholar 

  12. Park JP, Kim SW, Hwang HJ, Yun JW (2001) Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett Appl Microbiol 33:76–81. doi:10.1046/j.1472-765X.2001.00950.x

    Article  PubMed  CAS  Google Scholar 

  13. Saldanha RL, Garcia JE, Dekker RFH, Vilas-Boas LA, Barbosa AM (2007) Genetic diversity among Botryosphaeria isolates and their correlation with cell wall-lytic enzyme production. Braz J Microbiol 38:259–264. doi:10.1590/S1517-83822007000200013

    Article  Google Scholar 

  14. Sassaki GL, Ferreira JC, Glienke-Blanco C, Torri G, Toni FD, Gorin PAJ, Iacomini M (2002) Pustulan and branched β-galactofuranan from the phytopathogenic fungus Guignardia citricarpa, excreted from media containing glucose and sucrose. Carbohydr Polym 48:385–389. doi:10.1016/S0144-8617(01)00286-7

    Article  CAS  Google Scholar 

  15. Selbmann L, Stingele F, Petruccioli M (2003) Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina. Antonie Van Leeuwenhoeck 84:135–145. doi:10.1023/A:1025421401536

    Article  CAS  Google Scholar 

  16. Shih I-L, Pan K, Hsieh C (2006) Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Process Biochem 41:1129–1135. doi:10.1016/j.procbio.2005.12.005

    Article  CAS  Google Scholar 

  17. Steluti RM, Giese EC, Piggato MM, Sumiya AFG, Covizzi LG, Job AE, Cardoso MS, Silva MLC, Dekker RFH, Barbosa AM (2004) Comparison of botryosphaeran production by the ascomyceteous fungus Botryosphaeria sp., grown on different carbohydrate carbon sources, and their partial structural features. J Basic Microbiol 44:480–486. doi:10.1002/jobm.200410415

    Article  PubMed  CAS  Google Scholar 

  18. Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46. doi:10.1016/S0167-7799(97)01139-6

    Article  PubMed  CAS  Google Scholar 

  19. Thetsrimuang C, Khammuang S, Chiablaem K, Srisomsap C, Sarnthima R (2011) Antioxidant properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lév. Food Chem 128:634–639. doi:10.1016/j.foodchem.2011.03.077

    Article  CAS  Google Scholar 

  20. Tsiapali E, Whaley S, Kalbfleisch J, Ensley H, Browder W, Williams D (2001) Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radic Biol Med 30:393–402. doi:10.1016/S0891-5849(00)00485-8

    Article  PubMed  CAS  Google Scholar 

  21. Vasconcelos AFD, Monteiro NK, Dekker RFH, Barbosa AM, Carbonero ER, Silveira JLM, Sassaki GL, Silva R, Silva MLC (2008) Three exopolysaccharides of the β-(1→6)-d-glucan type and a β-(1→3;1→6)-d-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit. Carbohydr Res 343:2481–2485. doi:10.1016/j.carres.2008.06.013

    Article  PubMed  CAS  Google Scholar 

  22. Vogel HJ (1956) A convenient growth medium for Neurospora crassa. Microb Genet Bull 13:42–43

    Google Scholar 

  23. Yang HL, Chen CS, Chang WH, Lu FJ, Lai YC, Chen CC, Hseu TH, Kuo CT, Hseu YC (2006) Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata. Cancer Lett 231:215–227. doi:10.1016/j.canlet.2005.02.004

    Article  PubMed  CAS  Google Scholar 

  24. Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18:4–19. doi:10.1016/j.tifs.2006.07.013

    Article  Google Scholar 

  25. Zhang Y, Li S, Wang X, Zhang L, Cheung PCK (2011) Advances in lentinan: isolation, structure, chain conformation and bioactivities. Food Hydrocoll 25:196–206. doi:10.1016/j.foodhyd.2010.02.001

    Article  Google Scholar 

Download references

Acknowledgments

The investigators gratefully acknowledge the financial support of CNPq (Brazil), FAPESP (Brazil), NSERC-RCD (Dekker) and Lakehead University (Canada).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mário A. Alves da Cunha or Robert F. H. Dekker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves da Cunha, M.A., Turmina, J.A., Ivanov, R.C. et al. Lasiodiplodan, an exocellular (1→6)-β-d-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity. J Ind Microbiol Biotechnol 39, 1179–1188 (2012). https://doi.org/10.1007/s10295-012-1112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1112-2

Keywords

Navigation