Skip to main content

Advertisement

Log in

Photosynthetic accumulation of carbon storage compounds under CO2 enrichment by the thermophilic cyanobacterium Thermosynechococcus elongatus

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The growth characteristics of Thermosynechococcus elongatus on elevated CO2 were studied in a photobioreactor. Cultures were able to grow on up to 20% CO2. The maximum productivity and CO2 fixation rates were 0.09 ± 0.01 and 0.17 ± 0.01 mg ml−1 day−1, respectively, for cultures grown on 20% CO2. Three major carbon pools—lipids, polyhydroxybutyrates (PHBs), and glycogen—were measured. These carbon stores accounted for 50% of the total biomass carbon in cultures grown on atmospheric CO2 (no supplemental CO2), but only accounted for 30% of the total biomass carbon in cultures grown on 5–20% CO2. Lipid content was approximately 20% (w/w) under all experimental conditions, while PHB content reached 14.5% (w/w) in cultures grown on atmospheric CO2 and decreased to approximately 2.0% (w/w) at 5–20% CO2. Glycogen levels did not vary significantly and remained about 1.4% (w/w) under all test conditions. The maximum amount of CO2 sequestered over the course of the nine-day chemostat experiment was 1.15 g l−1 in cultures grown on 20% CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abed R, Dobretsov S (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    Article  PubMed  CAS  Google Scholar 

  2. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35

    Article  PubMed  CAS  Google Scholar 

  3. Asada Y, Miyake M, Miyake J, Kurane R, Tokiwa Y (1999) Photosynthetic accumulation of poly-(hydroxybutyrate) by cyanobacteria—the metabolism and potential for CO2 recycling. Int J Biol Macromol 25:37–42

    Article  PubMed  CAS  Google Scholar 

  4. Badger M, Price G (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609–622

    Article  PubMed  CAS  Google Scholar 

  5. Castenholz RW (1988) Thermophilic cyanobacteria: special problems. Method Enzymol 167:96–100

    Google Scholar 

  6. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  PubMed  CAS  Google Scholar 

  7. Christie W (1973) Lipid analysis: isolation, separation, identification, and structural analysis of lipids. Pergamon, Oxford

  8. de Morais M, Costa J (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Google Scholar 

  9. De Philippis R, Sili C, Vincenzini M (1992) Glycogen and poly-{beta}-hydroxybutyrate synthesis in spirulina maxima. Microbiology 138:1623–1628

    Article  Google Scholar 

  10. Diamond L, Akinfiev N (2003) Solubility of CO2 in water from −1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase Equilib 208(1–2):265–290

    Google Scholar 

  11. Eckert JS, Foote EH, Rollison LR, Walter LF (1967) Absorption processes utilizing packed towers. Ind Eng Chem 59(2):41–47

    Article  CAS  Google Scholar 

  12. Ernst A, Kirschenlohr H, Diez J, Böger P (1984) Glycogen content and nitrogenase activity in anabaena variabilis. Arch Microbiol 140(2–3):120–125

    Article  CAS  Google Scholar 

  13. Folch J, Lees M, Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497

    PubMed  CAS  Google Scholar 

  14. Gill NK, Appleton M, Baganz F, Lye GJ (2008) Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up. Biotechnol Bioeng 100(6):1144–1155

    Article  PubMed  CAS  Google Scholar 

  15. Hai T, Oppermann-Sanio F (1999) Purification and characterization of cyanophycin and cyanophycin synthetase from the thermophilic Synechococcus sp. Ma19. FEMS Microbiol Lett 181:229–236

    Article  PubMed  CAS  Google Scholar 

  16. Harun R, Singh M, Forde G, Danquah M (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14(3):1037–1047

    Article  CAS  Google Scholar 

  17. Hill GA (2006) Measurement of overall volumetric mass transfer coefficients for carbon dioxide in a well-mixed reactor using a pH probe. Ind Eng Chem Res 45(16):5796–5800

    Google Scholar 

  18. Holladay J, White J, Bozell J, Johnson D (2007) Top value-added chemicals from biomass. Volume 2—results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory, Richland

  19. Hsueh H, Li W, Chen H, Chu H (2009) Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. Cl-1 and Nannochloropsis oculta. J Photochem Photobiol B 95:33–39

    Article  PubMed  CAS  Google Scholar 

  20. Jacob-Lopes E, Gimenes Scoparo C (2010) Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manag 51:894–900

    Article  CAS  Google Scholar 

  21. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411(6840):909–917

    Google Scholar 

  22. Kajiwara S, Yamada H, Ohkuni N (1997) Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942. Energy Convers Manag 38:S529–S532

    Google Scholar 

  23. Kromkamp J (1987) Formation and functional significance of storage products in cyanobacteria. NZ J Mar Freshw Res 21:457–465

    Google Scholar 

  24. Kunjapur A, Eldridge R (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49:3516–3526

    Article  CAS  Google Scholar 

  25. Law J, Slepecky R (1961) Assay of poly-b-hydroxybutyric acid. J Bacteriol 82(1):33–36

    PubMed  CAS  Google Scholar 

  26. Li Y, Horsman M, Wu N, Lan C, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    PubMed  CAS  Google Scholar 

  27. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438(7070):1040–1044

    Google Scholar 

  28. Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Google Scholar 

  29. Mata T, Martins A, Caetano N (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  30. Metcalf E, Tchobanoglous G, Burton FL, Stensel HD (2004) Wastewater engineering: treatment and reuse (McGraw-Hill Series on Civil and Environmental Engineering), 4th edn. McGraw-Hill, Boston

  31. Miyachi S, Iwasaki I, Shiraiwa Y (2003) Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynth Res 77:139–153

    Google Scholar 

  32. Miyake M, Erata M, Asada Y (1996) A thermophilic cyanobacterium, Synechococcus sp. Ma19, capable of accumulating poly-[beta]-hydroxybutyrate. J Ferment Bioeng 82(5):512–514

    Article  CAS  Google Scholar 

  33. Miyake M, Takase K, Narato M, Khatipov E, Schnackenberg J, Shirai M, Kurane R, Asada Y (2000) Polyhydroxybutyrate production from carbon dioxide by cyanobacteria. Appl Biochem Biotechnol 84–86:991–1002

    Article  PubMed  Google Scholar 

  34. Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE (2)—screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manag 38:S493–S497

  35. Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (supplement). DNA Res 9(4):135–148

    Google Scholar 

  36. Ono E, Cuello J (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96(1):129–134

    Article  Google Scholar 

  37. Papazi A, Makridis P, Divanach P (2008) Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiol Plant 132:338–349

    Article  PubMed  CAS  Google Scholar 

  38. Porra R (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73(1):149–156

    Article  PubMed  CAS  Google Scholar 

  39. Van’t Reit K (1979) Review of measuring methods and results in nonviscous gas–liquid mass transfer in stirred vessels. Ind Eng Chem Process Des Dev 18(3):357–364

  40. Sakai N, Sakamoto Y, Kishimoto N, Chihara M (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manag 36(6–9):693–696

    Google Scholar 

  41. Scott S, Davey M, Dennis J, Horst I (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  PubMed  CAS  Google Scholar 

  42. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610

    Article  CAS  Google Scholar 

  43. Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. Clean 36(5–6):433–442

    CAS  Google Scholar 

  44. Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Article  PubMed  CAS  Google Scholar 

  45. Yoo S, Keppel C, Spalding M, Jane J (2007) Effects of growth condition on the structure of glycogen produced in cyanobacterium Synechocystis sp. Pcc6803. Int J Biol Macromol 40:498–504

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Elizabeth Burrows for her technical assistance in setting up and troubleshooting the bioreactors. This work was supported in part by the DOD/ASEE SMART scholarship program. Special thanks to Markael Luterra for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jed O. Eberly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberly, J.O., Ely, R.L. Photosynthetic accumulation of carbon storage compounds under CO2 enrichment by the thermophilic cyanobacterium Thermosynechococcus elongatus . J Ind Microbiol Biotechnol 39, 843–850 (2012). https://doi.org/10.1007/s10295-012-1092-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1092-2

Keywords

Navigation