Skip to main content
Log in

Expression and fermentation optimization of oxidized polyvinyl alcohol hydrolase in E. coli

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Oxidized polyvinyl alcohol (PVA) hydrolase (OPH) is a key enzyme in the degradation of PVA, suggesting that OPH has a great potential for application in textile desizing processes. In this study, the OPH gene from Sphingopyxis sp. 113P3 was modified, by artificial synthesis, for overexpression in Escherichia coli. The OPH gene, lacking the sequence encoding the original signal peptide, was inserted into pET-20b (+) expression vector, which was then used to transform E. coli BL21 (DE3). OPH expression was detected in culture medium in which the transformed E. coli BL21 (DE3) was grown. Nutritional and environmental conditions were investigated for improved production of OPH protein by the recombinant strain. The highest OPH activity measured was 47.54 U/mL and was reached after 84 h under optimal fermentation conditions; this level is 2.64-fold higher that obtained under sub-optimal conditions. The productivity of recombinant OPH reached 565.95 U/L/h. The effect of glycine on the secretion of recombinant OPH was examined by adding glycine to the culture medium to a final concentration of 200 mM. This concentration of glycine reduced the fermentation time by 24 h and increased the productivity of recombinant OPH to 733.17 U/L/h. Our results suggest that the recombinant strain reported here has great potential for use in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carri M, Villaverde A (2003) Role of molecular chaperones in inclusion body formation. FEBS Lett 537:215–221

    Article  Google Scholar 

  2. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24:530–536

    Article  PubMed  CAS  Google Scholar 

  3. Fink A (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:R9–R23

    Article  PubMed  CAS  Google Scholar 

  4. Gething M, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  PubMed  CAS  Google Scholar 

  5. Hashimoto S, Fujita M (1985) Isolation of a bacterium requiring three amino acids for polyvinyl alcohol degradation. J Ferment Technol 63:471–474

    CAS  Google Scholar 

  6. Hatanaka T, Asahi N, Tsuji M (1995) Purification and characterization of poly (vinyl alcohol) dehydrogenase from Pseudomonas sp. 113P3. Biosci Biotechnol Biochem 59:1813–1816

    Article  CAS  Google Scholar 

  7. Hirota-Mamoto R, Nagai R, Tachibana S, Yasuda M, Tani A, Kimbara K, Kawai F (2006) Cloning and expression of the gene for periplasmic poly(vinyl alcohol) dehydrogenase from Sphingomonas sp strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology 152:1941–1949

    Article  PubMed  CAS  Google Scholar 

  8. Hu XP, Mamoto R, Fujioka Y, Tani A, Kimbara K, Kawai F (2008) The pva operon is located on the megaplasmid of Sphingopyxis sp strain 113P3 and is constitutively expressed, although expression is enhanced by PVA. Appl Microbiol Biotechnol 78:685–693

    Article  PubMed  CAS  Google Scholar 

  9. Kaderbhai N, Karim A, Hankey W, Jenkins G, Venning J, Kaderbhai M (1997) Glycine-induced extracellular secretion of a recombinant cytochrome expressed in Escherichia coli. Biotechnol Appl Biochem 25:53–61

    PubMed  CAS  Google Scholar 

  10. Kawagoshi Y, Fujita M (1998) Purification and properties of the polyvinyl alcohol-degrading enzyme 2, 4-pentanedione hydrolase obtained from Pseudomonas vesicularis var. povalolyticus pH. World J Microbiol Biotechnol 14:95–100

    Article  CAS  Google Scholar 

  11. Kawai F, Hu XP (2009) Biochemistry of microbial polyvinyl alcohol degradation. Appl Microbiol Biotechnol 84:227–237

    Article  PubMed  CAS  Google Scholar 

  12. Klomklang W, Tani A, Kimbara K, Mamoto R, Ueda T, Shimao M, Kawai F (2005) Biochemical and molecular characterization of a periplasmic hydrolase for oxidized polyvinyl alcohol from Sphingomonas sp strain 113P3. Microbiology 151:1255–1262

    Article  PubMed  CAS  Google Scholar 

  13. Mamoto R, Hu XP, Chiue H, Fujioka Y, Kawai F (2008) Cloning and expression of soluble cytochrome c and its role in polyvinyl alcohol degradation by polyvinyl alcohol-utilizing Sphingopyxis sp strain 113P3. J Biosci Bioeng 105:147–151

    Article  PubMed  CAS  Google Scholar 

  14. Mukhopadhyay A (1997) Inclusion bodies and purification of proteins in biologically active forms. Adv Biochem Eng Biotechnol 56:61–109

    PubMed  CAS  Google Scholar 

  15. Nord F (1936) Dehydrogenation activity of Fusarium lini B. Naturwissschaften 24:763

    Google Scholar 

  16. Rhee J, Bode J, Diaz-Ricci J, Poock D (1997) Influence of the medium composition and plasmid combination on the growth of recombinant Escherichia coli JM109 and on the production of the fusion protein EcoRI: SPA. J Biotechnol 55:69–83

    Article  PubMed  CAS  Google Scholar 

  17. Sakai K, Hamada N, Watanabe Y (1984) Non-enzymatic degradation of secondary alcohol oxidase-oxidized poly (vinyl alcohol). Agric Biol Chem 48:1093–1095

    Article  CAS  Google Scholar 

  18. Sakai K, Hamada N, Watanabe Y (1985) Purification and properties of secondary alcohol oxidase with an acidic isoelectric point. Agric Biol Chem 49:817–825

    Article  CAS  Google Scholar 

  19. Sakazawa C, Shimao M, Taniguchi Y, Kato N (1981) Symbiotic utilization of polyvinyl alcohol by mixed cultures. Appl Environ Microbiol 41:261–267

    PubMed  CAS  Google Scholar 

  20. Sharp P, Li W (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    Article  PubMed  CAS  Google Scholar 

  21. Shimao M, Ninomiya K, Kuno O, Kato N, Sakazawa C (1986) Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C. Appl Environ Microbiol 51:268–275

    PubMed  CAS  Google Scholar 

  22. Shimao M, Tamogami T, Kishida S, Harayama S (2000) The gene pvaB encodes oxidized polyvinyl alcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcohol dehydrogenase gene pvaA. Microbiology 146:649–657

    PubMed  CAS  Google Scholar 

  23. Shimao M, Tamogami T, Nishi K, Harayama S (1996) Cloning and characterization of the gene encoding pyrroloquinoline quinone-dependent poly (vinyl alcohol) dehydrogenase of Peudomonas sp. strain VM15C. Biosci Biotechnol Biochem 60:1056–1062

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki T (1976) Purification and some properties of polyvinyl alcohol degrading enzyme produced by Pseudomonas O-3. Agric Biol Chem 40:497–504

    Article  CAS  Google Scholar 

  25. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    PubMed  CAS  Google Scholar 

  26. Tang J, Yang H, Song S, Zhu P, Ji A (2008) Effect of glycine and Triton X-100 on secretion and expression of ZZ-EGFP fusion protein. Food Chem 108:657–662

    Article  CAS  Google Scholar 

  27. Watanabe Y, Morita M, Hamada N, Tsujisaka Y (1975) Formation of hydrogen peroxide by a polyvinyl alcohol degrading enzyme. Agric Biol Chem Jpn 39:2447–2448

    Article  CAS  Google Scholar 

  28. Yamatsu A, Matsumi R, Atomi H, Imanaka T (2006) Isolation and characterization of a novel poly (vinyl alcohol)-degrading bacterium, Sphingopyxis sp. PVA3. Appl Microbiol Biotechnol 72:804–811

    Article  PubMed  CAS  Google Scholar 

  29. Zhang D, Wang M, Du G, Zhao Q, Wu J, Chen J (2008) Surfactant protein of the Streptomyces subtilisin inhibitor family inhibits transglutaminase activation in Streptomyces hygroscopicus. J Agric Food Chem 56:3403–3408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Program for New Century Excellent Talents in University (NCET-07-0378), the Key Program of National Natural Science Foundation of China (No. 20836003), the Major State Basic Research Development Program of China (973 Program, No. 2007CB714306) and the Priority Academic Program Development of Jiangsu Higher Education Institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guocheng Du or Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Zhang, D., Liu, S. et al. Expression and fermentation optimization of oxidized polyvinyl alcohol hydrolase in E. coli . J Ind Microbiol Biotechnol 39, 99–104 (2012). https://doi.org/10.1007/s10295-011-1004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1004-x

Keywords

Navigation