Skip to main content
Log in

Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A Gram-negative anaerobic bacterium, Citrobacter sp. NC-1, was isolated from soil contaminated with arsenic at levels as high as 5,000 mg As kg−1. Strain NC-1 completely reduced 20 mM arsenate within 24 h and exhibited arsenate-reducing activity at concentrations as high as 60 mM. These results indicate that strain NC-1 is superior to other dissimilatory arsenate-reducing bacteria with respect to arsenate reduction, particularly at high concentrations. Strain NC-1 was also able to effectively extract arsenic from contaminated soils via the reduction of solid-phase arsenate to arsenite, which is much less adsorptive than arsenate. To characterize the reductase systems in strain NC-1, arsenate and nitrate reduction activities were investigated using washed-cell suspensions and crude cell extracts from cells grown on arsenate or nitrate. These reductase activities were induced individually by the two electron acceptors. This may be advantageous during bioremediation processes in which both contaminants are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmann D, Krumholz LR, Hemond HF, Lovley DR, Morel FMM (1997) Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environ Sci Technol 31:2923–2930

    Article  CAS  Google Scholar 

  2. Ahmann D, Roberts AL, Krumholtz LR, Morel FMM (1994) Microbe grows by reducing arsenic. Nature 371:750

    Article  PubMed  CAS  Google Scholar 

  3. Alam MG, Tokunaga S, Maekawa T (2001) Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere 43:1035–1041

    Article  PubMed  CAS  Google Scholar 

  4. Bagla P, Kaiser J (1996) India’s spreading health crisis draws global arsenic experts. Science 274:174–175

    Article  PubMed  CAS  Google Scholar 

  5. Chang YC, Shintaro K (2010) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated site in Japan. In: 2nd proceedings of studies of environmental issues in the Asian mega-cities, Seoul, Korea. pp 213–221

  6. Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833

    Article  PubMed  CAS  Google Scholar 

  7. Chauret C, Knowles R (1991) Effect of tungstate on nitrate and nitrite reductases in Azospirillum brasilense Sp7. Can J Microbiol 37:744–750

    Article  CAS  Google Scholar 

  8. Dowdle PR, Laverman AM, Oremland RS (1996) Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments. Appl Environ Microbiol 62:1664–1669

    PubMed  CAS  Google Scholar 

  9. Fujita M, Ike M, Nishimoto S, Takahashi K, Kashiwa M (1997) Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. J Ferment Bioeng 83:517–522

    Article  CAS  Google Scholar 

  10. Gates AJ, Hughes RO, Sharp SR, Millington PD, Nilavongse A, Cole JA, Leach ER, Jepson B, Richardson DJ, Butler CS (2003) Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten supplemented media. FEMS Microbiol Lett 220:261–269

    Article  PubMed  CAS  Google Scholar 

  11. Herbel MJ, Blum JS, Hoeft SE, Cohen SM, Arnold LL, Lisak J, Stolz JF, Oremland RS (2002) Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut. FEMS Microbiol Ecol 41:59–67

    Article  PubMed  CAS  Google Scholar 

  12. Jareonmit P, Kannika S, Michael JS (2010) Structure and diversity of arsenic-resistant bacteria in an old tin mine area of Thailand. J Microbiol Biotechnol 20:169–178

    PubMed  Google Scholar 

  13. Kashiwa M, Nishimoto S, Takahashi K, Ike M, Fujita M (2000) Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. J Biosci Bioeng 89:528–533

    Article  PubMed  CAS  Google Scholar 

  14. Kraft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653

    Article  Google Scholar 

  15. Langner HW, Inskeep WP (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ Sci Technol 34:3131–3136

    Article  CAS  Google Scholar 

  16. Laverman AM, Blum JS, Schaefer JK, Phillips EJP, Lovley DR, Oremland RS (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–3561

    PubMed  CAS  Google Scholar 

  17. Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  PubMed  CAS  Google Scholar 

  18. Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    PubMed  CAS  Google Scholar 

  19. Macur RE, Wheeler JT, Mcdermott TR, Inskeep WP (2001) Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3682

    Article  PubMed  CAS  Google Scholar 

  20. Manning BA, Goldberg S (1997) Arsenic(III) and arsenic(V) adsorption on three California soils. Soil Sci 162:886–895

    Article  CAS  Google Scholar 

  21. Newman DK, Beveridge TJ, Morel FMM (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028

    PubMed  CAS  Google Scholar 

  22. Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FMM (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388

    Article  PubMed  CAS  Google Scholar 

  23. Oremland RS, Blum JS, Bindi AB, Dowdle PR, Herbel M, Stolz JF (1999) Simultaneous reduction of nitrate and selenate by cell suspensions of selenium respiring bacteria. Appl Environ Microbiol 65:4385–4392

    PubMed  CAS  Google Scholar 

  24. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  PubMed  CAS  Google Scholar 

  25. Pontius F, Brown KG, Chen CJ (1994) Health implications of arsenic in drinking water. J Am Water Works Assoc 86:52–63

    CAS  Google Scholar 

  26. Prins RA, Cline-Theil W, Malestein A, Counotte GHM (1980) Inhibition of nitrate reduction in some rumen bacteria by tungstate. Appl Environ Microbiol 40:163–165

    PubMed  CAS  Google Scholar 

  27. Rittle KA, Drever JI, Colbeerg PJS (1995) Precipitation of arsenic during sulfate reduction. Geomicrobiol J 13:1–12

    Article  CAS  Google Scholar 

  28. Roberts LC, Hug SJ, Ruettimann T, Billah MM, Khan AW, Rahman MT (2004) Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations. Environ Sci Technol 38:307–315

    Article  PubMed  CAS  Google Scholar 

  29. Sakata M (1987) Relationship between adsorption of arsenic(III) and boron by soil and soil properties. Environ Sci Technol 21:1126–1130

    Article  CAS  Google Scholar 

  30. Saltikov CW, Cifuentes A, Venkateswaran K, Newman DK (2003) The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol 69:2800–2809

    Article  PubMed  CAS  Google Scholar 

  31. Saltikov CW, Olson BH (2002) Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl Environ Microbiol 68:280–288

    Article  PubMed  CAS  Google Scholar 

  32. Smith E, Naidu R, Alston AM (1999) Chemistry of arsenic in soils: I. Sorption of arsenate and arsenite by for Australian soils. J Environ Qual 28:1719–1726

    Article  CAS  Google Scholar 

  33. Soda S, Kanzaki M, Yamamura S, Kashiwa M, Fujita M, Ike M (2009) Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation of arsenic-contaminated soil. J Biosci Bioeng 107:130–137

    Article  PubMed  CAS  Google Scholar 

  34. Stolz JF, Gugliuzza T, Blum JS, Oremland R, Murillo FM (1997) Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3. Arch Microbiol 167:1–5

    Article  PubMed  CAS  Google Scholar 

  35. Tamaki S, Frankenberger WT (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

    Article  PubMed  CAS  Google Scholar 

  36. Tokunaga S, Hakuta T (2002) Acid washing and stabilization of an artificial arsenic contaminated soil. Chemosphere 46:31–38

    Article  PubMed  CAS  Google Scholar 

  37. Yamamura S, Ike M, Fujita M (2003) Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1. J Biosci Bioeng 96:454–460

    PubMed  CAS  Google Scholar 

  38. Yamamura S, Yamamoto N, Ike M, Fujita M (2005) Arsenic extraction from solid phase using a dissimilatory arsenate-reducing bacterium. J Biosci Bioeng 100:219–222

    Article  PubMed  CAS  Google Scholar 

  39. Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4753

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michihiko Ike, University of Osaka, for his kind cooperation in collection of the samples. The authors also thank Dr. Tadashi Toyama, University of Yamanashi, for technical support with the analysis of arsenate. This work was partly supported by a grant (Adaptable and Seamless Technology Transfer Program through Target-driven R&D, AS211Z00600E) from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young C. Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

10295_2011_996_MOESM2_ESM.doc

Fig. 1. Phylogenic tree based on comparison of the 16S rRNA gene sequence. The phylogenic tree was generated using the neighbor-joining method. Bootstrap values shown are based on 100 replications. Scale bar represents 0.005% sequence difference. Supplementary material 2 (DOC 42 kb)

Supplementary material 3 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y.C., Nawata, A., Jung, K. et al. Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil. J Ind Microbiol Biotechnol 39, 37–44 (2012). https://doi.org/10.1007/s10295-011-0996-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0996-6

Keywords

Navigation