Skip to main content

Advertisement

Log in

Introducing process analytical technology (PAT) in filamentous cultivation process development: comparison of advanced online sensors for biomass measurement

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The recent process analytical technology (PAT) initiative has put an increased focus on online sensors to generate process-relevant information in real time. Specifically for fermentation, however, introduction of online sensors is often far from straightforward, and online measurement of biomass is one of the best examples. The purpose of this study was therefore to compare the performance of various online biomass sensors, and secondly to demonstrate their use in early development of a filamentous cultivation process. Eight Streptomyces coelicolor fed-batch cultivations were run as part of process development in which the pH, the feeding strategy, and the medium composition were varied. The cultivations were monitored in situ using multi-wavelength fluorescence (MWF) spectroscopy, scanning dielectric (DE) spectroscopy, and turbidity measurements. In addition, we logged all of the classical cultivation data, such as the carbon dioxide evolution rate (CER) and the concentration of dissolved oxygen. Prediction models for the biomass concentrations were estimated on the basis of the individual sensors and on combinations of the sensors. The results showed that the more advanced sensors based on MWF and scanning DE spectroscopy did not offer any advantages over the simpler sensors based on dual frequency DE spectroscopy, turbidity, and CER measurements for prediction of biomass concentration. By combining CER, DE spectroscopy, and turbidity measurements, the prediction error was reduced to 1.5 g/l, corresponding to 6% of the covered biomass range. Moreover, by using multiple sensors it was possible to check the quality of the individual predictions and switch between the sensors in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ansorge S, Esteban G, Schmid G (2007) On-line monitoring of infected Sf-9 insect cell cultures by scanning permittivity measurements and comparison with off-line biovolume measurements. Cytotechnology 55:115–124

    Article  PubMed  Google Scholar 

  2. Ansorge S, Esteban G, Schmid G (2010) Multifrequency permittivity measurements enable on-line monitoring of changes in intracellular conductivity due to nutrient limitations during batch cultivations of CHO cells. Biotechnol Prog 26:272–283

    PubMed  CAS  Google Scholar 

  3. Arnoux AS, Preziosi-Belloy L, Esteban G, Teissier P, Ghommidh C (2005) Lactic acid bacteria biomass monitoring in highly conductive media by permittivity measurements. Biotechnol Lett 27:1551–1557

    Article  PubMed  CAS  Google Scholar 

  4. Bhargava S, Wenger KS, Rane K, Rising V, Marten MR (2005) Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source. Biotechnol Bioeng 89:524–529

    Article  PubMed  CAS  Google Scholar 

  5. Clementschitsch F, Kern J, Pötschacher F, Bayer K (2005) Sensor combination and chemometric modelling for improved process monitoring in recombinant E. coli fed-batch cultivations. J Biotechnol 120:183–197

    Article  PubMed  CAS  Google Scholar 

  6. Dabros M, Amrhein M, Bonvin D, Marison IW, von Stockar U (2009) Data reconciliation of concentration estimates from mid-infrared and dielectric spectral measurements for improved on-line monitoring of bioprocesses. Biotechnol Prog 25:578–588

    Article  PubMed  CAS  Google Scholar 

  7. Dabros M, Dennewald D, Currie DJ, Lee MH, Todd RW, Marison IW, von Stockar U (2009) Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass. Bioprocess Biosyst Eng 32:161–173

    Article  PubMed  CAS  Google Scholar 

  8. Eliasson Lantz A, Jørgensen P, Poulsen E, Lindemann C, Olsson L (2006) Determination of cell mass and polymyxin using multi-wavelength fluorescence. J Biotechnol 121:544–554

    Article  PubMed  CAS  Google Scholar 

  9. Guan Y, Evans PM, Kemp RB (1998) Specific heat flow rate: an online monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy. Biotechnol Bioeng 58:464–477

    Article  PubMed  CAS  Google Scholar 

  10. Haack MB, Eliasson A, Olsson L (2004) On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence. J Biotechnol 114:199–208

    Article  PubMed  CAS  Google Scholar 

  11. Haack MB, Eliasson Lantz A, Mortensen PP, Olsson L (2007) Chemometric analysis of in-line multi-wavelength fluorescence measurements obtained during cultivations with a lipase producing Aspergillus oryzae strain. Biotechnol Bioeng 96:904–913

    Article  PubMed  CAS  Google Scholar 

  12. Hantelmann K, Kollecker M, Hüll D, Hitzmann B, Scheper T (2006) Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. J Biotechnol 121:410–417

    Article  PubMed  CAS  Google Scholar 

  13. Harris CM, Todd RW, Bungard SJ, Lovitt RW, Morris JG, Kell DB (1987) Dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the real-time estimation of microbial biomass. Enzyme Microb Technol 9:181–186

    Article  CAS  Google Scholar 

  14. Hobbs G, Frazer CM, Gardner DC, Cullum JA, Oliver SG (1989) Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 31:272–277

    Article  CAS  Google Scholar 

  15. Jenzsch M, Simutis R, Eisbrenner G, Stückrath I, Lübbert A (2006) Estimation of biomass concentrations in fermentation processes for recombinant protein production. Bioprocess Biosyst Eng 29:19–27

    Article  PubMed  CAS  Google Scholar 

  16. Kiviharju K, Salonen K, Moilanen U, Meskanen E, Leisola M, Eerikäinen T (2007) On-line biomass measurements in bioreactor cultivations: comparison study of two on-line probes. J Ind Microbiol Biotechnol 34:561–566

    Article  PubMed  CAS  Google Scholar 

  17. Kiviharju K, Salonen K, Moilanen U, Eerikäinen T (2008) Biomass measurement online: the performance of in situ measurements and software sensors. J Ind Microbiol Biotechnol 35:657–665

    Article  PubMed  CAS  Google Scholar 

  18. Li JK, Asali EC, Humphrey AE, Horvath JJ (1991) Monitoring cell concentration and activity by multiple excitation fluorometry. Biotechnol Prog 7:21–27

    Article  PubMed  CAS  Google Scholar 

  19. Lindemann C, Marose S, Nielsen HO, Scheper T (1998) 2-Dimensional fluorescence spectroscopy for on-line bioprocess monitoring. Sens Actuators B Chem 51:273–277

    Article  Google Scholar 

  20. Madrid RE, Felice CJ (2005) Microbial biomass estimation. Crit Rev Biotechnol 25:97–112

    Article  PubMed  CAS  Google Scholar 

  21. Markx GH, Davey CL, Kell DB (1991) The permittistat a novel type of turbidostat. J Gen Microbiol 137:737–744

    Google Scholar 

  22. Markx GH, Davey CL, Kell DB, Morris P (1991) The dielectric permittivity at radio frequencies and the Bruggeman probe: novel techniques for the on-line determination of biomass concentrations in plant cell cultures. J Biotechnol 20:279–290

    Article  CAS  Google Scholar 

  23. Marose S, Lindemann C, Scheper T (1998) Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring. Biotechnol Prog 14:63–74

    Article  PubMed  CAS  Google Scholar 

  24. Neves AA, Pereira DA, Vieira LM, Menezes JC (2000) Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J Biotechnol 84:45–52

    Article  CAS  Google Scholar 

  25. Noll T, Biselli M (1998) Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J Biotechnol 63:187–198

    Article  PubMed  CAS  Google Scholar 

  26. November EJ, Van Impe JF (2000) Evaluation of on-line viable biomass measurements during fermentations of Candida utilis. Bioprocess Eng 23:473–477

    Article  CAS  Google Scholar 

  27. Olsson L, Nielsen J (1997) Online and in situ monitoring of biomass in submerged cultivations. Trends Biotechnol 15:517–522

    Article  CAS  Google Scholar 

  28. Opel CF, Li J, Amanullah A (2010) Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy. Biotechnol Prog 26:1187–1199

    PubMed  CAS  Google Scholar 

  29. Ödman P, Johansen CL, Olsson L, Gernaey KV, Eliasson Lantz A (2009) On-line estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in situ multi-wavelength fluorescence and software sensors. J Biotechnol 144:102–112

    Article  PubMed  Google Scholar 

  30. Ödman P, Johansen C, Olsson L, Gernaey KV, Eliasson Lantz A (2010) Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations. Appl Microbiol Biotechnol 86:1745–1759

    Article  PubMed  Google Scholar 

  31. Sarra M, Ison AP, Lilly MD (1996) The relationships between biomass concentration, determined by a capacitance-based probe, rheology and morphology of Saccharopolyspora erythraea cultures. J Biotechnol 51:157–165

    Article  CAS  Google Scholar 

  32. Siano SA (1997) Biomass measurement by inductive permittivity. Biotechnol Bioeng 55:289–304

    Article  PubMed  CAS  Google Scholar 

  33. Sundström H, Enfors S (2008) Software sensors for fermentation processes. Bioprocess Biosyst Eng 31:145–152

    Article  PubMed  Google Scholar 

  34. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  35. Williams P, Norris K (1987) Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, Minnesota, USA

    Google Scholar 

  36. Xiong Z, Guo M, Guo Y, Chu J, Zhuang Y, Zhang S (2008) Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium. J Biosci Bioeng 105:409–413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgment is made of Insatech A/S and Aber Instruments Ltd. for the use of the Biomass Monitor 220. The Ph.D. project of Nanna Petersen Rønnest was supported by a grant from the Innovative Bioprocess Technology Research Consortium financed by the Danish Research Council for Technology and Production Sciences, Chr. Hansen A/S, Danisco A/S and Novozymes A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krist V. Gernaey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rønnest, N.P., Stocks, S.M., Eliasson Lantz, A. et al. Introducing process analytical technology (PAT) in filamentous cultivation process development: comparison of advanced online sensors for biomass measurement. J Ind Microbiol Biotechnol 38, 1679–1690 (2011). https://doi.org/10.1007/s10295-011-0957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0957-0

Keywords

Navigation