Skip to main content
Log in

Analysis and functional expression of NPP pathway-specific regulatory genes in Pseudonocardia autotrophica

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Using the genomics-guided polyene screening method, a rare actinomycetes called Pseudonocardia autotrophica was previously identified to contain functionally clustered nystatin-like biosynthetic genes and to produce a presumably novel polyene compound named nystatin-like Pseudonocardia polyene (NPP) (Kim et al., J Ind Microbiol Biotechnol 36:1425–1434, 2009). Since very low NPP productivity was observed in most P. autotrophica culture conditions, its biosynthetic pathway was proposed to be tightly regulated. Herein we report in silico analysis of six putative NPP pathway-specific regulatory genes present in its biosynthetic gene cluster, followed by functional overexpression of these regulatory genes in P. autotrophica. Three pathway-specific regulatory genes (nppRI, RIII, and RV) were predicted to belong to a typical LAL-type transcriptional family. Each regulatory gene was cloned under the strong constitutive ermE* promoter in a Streptomyces integrative pSET152 plasmid, followed by direct intergeneric conjugation from a plasmid-containing E. coli donor cell to P. autotrophica. While all the P. autotrophica exconjugants exhibited improved NPP productivity, the one containing nppRIII showed the highest NPP productivity improvement. In addition, culture-time-dependent analysis revealed that the nppRIII-stimulated NPP biosynthesis was more significant in the late exponential growth stage than in the stationary stage. Moreover, the P. autotrophica nppRIII-disruption mutant failed to produce NPP, with significantly reduced transcription levels of most npp biosynthetic genes. The results described suggest that identification and overexpression of key pathway-specific regulatory gene, followed by optimum harvest timing, should be critical factors to maximize the productivity of an intrinsically low-level metabolite such as NPP produced by rare actinomycetes species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anton N, Santos-Aberturas J, Mendes MV, Guerra SM, Martin JF, Aparicio JF (2007) PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology 153:3174–3183

    Article  PubMed  CAS  Google Scholar 

  2. Arias P, Fernandez-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968

    PubMed  CAS  Google Scholar 

  3. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    Article  PubMed  CAS  Google Scholar 

  4. Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  PubMed  CAS  Google Scholar 

  5. Chen S, Huang X, Zhou X, Bai L, He J, Jeong KJ, Lee SY, Deng Z (2003) Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem Biol 10:1065–1076

    Article  PubMed  CAS  Google Scholar 

  6. De Schrijver A, De Mot R (1999) A subfamily of MalT-related ATP-dependent regulators in the LuxR family. Microbiology 145:1287–1288

    Article  PubMed  Google Scholar 

  7. Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229

    Article  PubMed  CAS  Google Scholar 

  8. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  PubMed  CAS  Google Scholar 

  9. He W, Lei J, Liu Y, Wang Y (2008) The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Arch Microbiol 189:501–510

    Article  PubMed  CAS  Google Scholar 

  10. Hefti MH, Francoijs KJ, de Vries SC, Dixon R, Vervoort J (2004) The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur J Biochem 271:1198–1208

    Article  PubMed  CAS  Google Scholar 

  11. Henikoff S, Wallace JC, Brown JP (1990) Finding protein similarities with nucleotide sequence databases. Methods Enzymol 183:113–132

    Google Scholar 

  12. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. A laboratory manual. John Innes Foundation, Norwich

    Google Scholar 

  13. Kim BG, Lee MJ, Seo J, Hwang YB, Lee MY, Han K, Sherman DH, Kim ES (2009) Identification of functionally clustered nystatin-like biosynthetic genes in a rare actinomycetes, Pseudonocardia autotrophica. J Ind Microbiol Biotechnol 36:1425–1434

    Article  PubMed  CAS  Google Scholar 

  14. Kitani S, Ikeda H, Sakamoto T, Noguchi S, Nihira T (2009) Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Appl Microbiol Biotechnol 82:1089–1096

    Article  PubMed  CAS  Google Scholar 

  15. Lee MY, Myeong JS, Park HJ, Han K, Kim ES (2006) Isolation and partial characterization of a cryptic polyene gene cluster in Pseudonocardia autotrophica. J Ind Microbiol Biotechnol 33:84–87

    Article  PubMed  CAS  Google Scholar 

  16. Madduri K, Hutchinson CR (1995) Functional characterization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol 177:1208–1215

    PubMed  CAS  Google Scholar 

  17. Narva KE, Feitelson JS (1990) Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J Bacteriol 172:326–333

    PubMed  CAS  Google Scholar 

  18. Perez-Llarena FJ, Liras P, Rodriguez-Garcia A, Martin JF (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both beta-lactam compounds. J Bacteriol 179:2053–2059

    PubMed  CAS  Google Scholar 

  19. Ponting CP, Aravind L (1997) PAS: a multifunctional domain family comes to light. Curr Biol 7:R674–677

    Article  PubMed  CAS  Google Scholar 

  20. Sambrook J, Russell DW (2001) Molecular cloning: a labolatory mannual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  21. Sekurova ON, Brautaset T, Sletta H, Borgos SE, Jakobsen MOM, Ellingsen TE, Strom AR, Valla S, Zotchev SB (2004) In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345–1354

    Article  PubMed  CAS  Google Scholar 

  22. Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    PubMed  CAS  Google Scholar 

  23. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Diatantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  24. Wietzorrek A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184

    Article  PubMed  CAS  Google Scholar 

  25. Wilson DJ, Xue Y, Reynolds KA, Sherman DH (2001) Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J Bacteriol 183:3468–3475

    Article  PubMed  CAS  Google Scholar 

  26. Weber T, Welzel K, Pelzer S, Vente A, Wohlleben W (2003) Exploiting the genetic potential of polyketide producing Streptomycetes. J Biotechnol 106:221–232

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a 21C Frontier R&D program grant from the Korean Ministry of Education, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eung-Soo Kim.

Additional information

H.-G. Jeon and J. Seo contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, HG., Seo, J., Lee, MJ. et al. Analysis and functional expression of NPP pathway-specific regulatory genes in Pseudonocardia autotrophica . J Ind Microbiol Biotechnol 38, 573–579 (2011). https://doi.org/10.1007/s10295-011-0939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0939-2

Keywords

Navigation