Skip to main content
Log in

Direct concentration and viability measurement of yeast in corn mash using a novel imaging cytometry method

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Worldwide awareness of fossil-fuel depletion and global warming has been increasing over the last 30 years. Numerous countries, including the USA and Brazil, have introduced large-scale industrial fermentation facilities for bioethanol, biobutanol, or biodiesel production. Most of these biofuel facilities perform fermentation using standard baker’s yeasts that ferment sugar present in corn mash, sugar cane, or other glucose media. In research and development in the biofuel industry, selection of yeast strains (for higher ethanol tolerance) and fermentation conditions (yeast concentration, temperature, pH, nutrients, etc.) can be studied to optimize fermentation performance. Yeast viability measurement is needed to identify higher ethanol-tolerant yeast strains, which may prolong the fermentation cycle and increase biofuel output. In addition, yeast concentration may be optimized to improve fermentation performance. Therefore, it is important to develop a simple method for concentration and viability measurement of fermenting yeast. In this work, we demonstrate an imaging cytometry method for concentration and viability measurements of yeast in corn mash directly from operating fermenters. It employs an automated cell counter, a dilution buffer, and staining solution from Nexcelom Bioscience to perform enumeration. The proposed method enables specific fluorescence detection of viable and nonviable yeasts, which can generate precise results for concentration and viability of yeast in corn mash. This method can provide an essential tool for research and development in the biofuel industry and may be incorporated into manufacturing to monitor yeast concentration and viability efficiently during the fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbott DA, Ingledew WM (2004) Buffering capacity of whole corn mash alters concentrations of organic acids required to inhibit growth of Saccharomyces cerevisiae and ethanol production. Biotechnol Lett 26:1313–1316

    Article  PubMed  CAS  Google Scholar 

  2. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuel from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  PubMed  CAS  Google Scholar 

  3. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19:2258–2270

    Article  PubMed  CAS  Google Scholar 

  4. Basso LC, Amorim HVd, Oliveira AJd, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163

    Article  PubMed  CAS  Google Scholar 

  5. Boyd AR, Gunasekera TS, Attfield PV, Simic K, Vincent SF, Veal DA (2003) A flow-cytometric method for determination of yeast viability and cell number in a brewery. FEMS Yeast Res 3:11–16

    PubMed  CAS  Google Scholar 

  6. Deere D, Shen J, Vesey G, Bell P, Bissinger P, Veal D (1998) Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14:147–160

    Article  PubMed  CAS  Google Scholar 

  7. Foglieni C, Meoni C, Davalli AM (2001) Fluorescent dyes for cell viability: an application on prefixed conditions. Histochem Cell Biol 115:223–229

    PubMed  CAS  Google Scholar 

  8. Gibbons WR, Hughes SR (2009) Integrated biorefineries with engineered microbes and high-value co-products for profitable biofuels production. In Vitro Cell Dev Biol Plant 45:218–228

    Article  CAS  Google Scholar 

  9. Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurments using fluorescence microscopy. Biophys J 74:2702–2713

    Article  PubMed  CAS  Google Scholar 

  10. Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW (2007) Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175:1479–1487

    Article  PubMed  CAS  Google Scholar 

  11. King LM, Schisler DO, Ruocco JJ (1981) Epifluorescent method for detection of nonviable yeast. J Am Soc Brew Chem 39:52–54

    CAS  Google Scholar 

  12. Koksch M, Rothe G, Kiefel V, Schmitz G (1995) Fluorescence resonance energy transfer as a new method for the epitope-specific characterization of anti-platelet antibodies. J Immunol Methods 187:53–67

    Article  PubMed  CAS  Google Scholar 

  13. Ling E, Shirai K, Kanekatsu R, Kiguchi K (2003) Classification of larval circulating hemocytes of the silkworm Bombyx mori, by acridine orange and propidium iodide staining. Histochem Cell Biol 120:505–511

    Article  PubMed  CAS  Google Scholar 

  14. Mascotti K, McCullough J, Burger SR (2000) HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion 40:693–696

    Article  PubMed  CAS  Google Scholar 

  15. McCaig R (1990) Evaluation of the fluorescent dye 1-anilino-8-naphthalene sulfonic acid for yeast viability determination. J Am Soc Brew Chem 48:22–25

    CAS  Google Scholar 

  16. Michelson AD (1996) Flow cytometry: a clinical test of platelet function. Blood 87(12):4925–4936

    PubMed  CAS  Google Scholar 

  17. Mills DR (1941) Differential staining of living and dead yeast cells. J Food Sci 6(4):361–371

    Article  Google Scholar 

  18. Nikolić S, Mojović L, Rakin M, Pejin D, Nedović V (2009) Effect of different fermentation parameters on bioethanol production from corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. J Chem Technol Biotechnol 84:497–503

    Article  Google Scholar 

  19. Periasamy A (2201) Fluorescence resonance energy transfer microscopy: a mini review. J Biomed Opt 6(3):287–291

    Article  Google Scholar 

  20. Pirani A (2010) “Yeast concentration and viability using image-based fluorescence analysis.” Nature Methods, Application Notes (6), Online Version

  21. Selvin PR, Hearst JE (1994) Luminescence energy transfer using a terbium chelate: Improvements on fluorescence energy transfer. Proc Natl Acad Sci 91:10024–10028

    Article  PubMed  CAS  Google Scholar 

  22. Slater ML (1976) Rapid nuclear staining method for Saccharomyces cerevisiae. J Bacteriol 126(3):1339–1341

    PubMed  Google Scholar 

  23. Smart K (2003) Brewing yeast fermentation performance, 2 Ed., Blackwell Science Ltd

  24. Solomon M, Wofford J, Johnson C, Regan D, Creer MH (2010) Factors influencing cord blood viability assessment before cryopreservation. Transfusion 50:820–830

    Article  PubMed  Google Scholar 

  25. Stengel A, Goebel M, Yakubov I, Wang LX, Witcher D, Coskun T, Tache Y, Sachs G, Lambrecht NWG (2009) Identification and characterization of Nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 150(1):232–238

    Article  PubMed  CAS  Google Scholar 

  26. Szabo SE, Monroe SL, Fiorino S, Bitzan J, Loper K (2004) Evaluation of an automated instrument for viability and concentration measurements of cryopreserved hematopoietic cells. Lab Hematol 10:109–111

    Article  PubMed  CAS  Google Scholar 

  27. Taylor F, Mcaloon AJ, Craig JC, Yang P, Wahjudi J, Eckhoff SR (2001) Fermentation and costs of fuel ethanol from corn with quick-germ process. Appl Biochem Biotechnol 94(1):41–49

    Article  PubMed  CAS  Google Scholar 

  28. Trevors JT, Merrick RL, Russell I, Stewart GG (1983) A comparison of methods for assessing yeast viability. Biotechnol Lett 5(2):131–134

    Article  Google Scholar 

  29. Vairo MLR (1962) A modified adsorption method for determining percentage of dead yeast cells. Biotechnol Bioeng 4:247–254

    Article  Google Scholar 

  30. Vertès AA, Inui M, Yukawa H (2008) Technological options for biological fuel ethanol. J Mol Microbiol Biotechnol 15:16–30

    Article  PubMed  Google Scholar 

  31. Wallen CA, Higashikubo R, Dethlefsen LA (1980) Comparison of two flow cytometric assays for cellular RNA-acridine orange and propidium iodide. Cytometry 3(3):155–160

    Article  Google Scholar 

  32. Zandycke SMV, Simal O, Gualdoni S, Smart KA (2003) Determination of yeast viability using fluorophores. J Am Soc Brew Chem 61(1):15–22

    Google Scholar 

Download references

Acknowledgments

The authors would like thank Dan Matlick and Francis Bauer from Lincolnway Energy LLC for providing the fermentation yeast samples.

Conflict of interest

The authors declare a competing financial interest in that the work described in this manuscript is aimed at product performance reporting for Nexcelom Bioscience, LLC. The performance of the instrumentation and reagents have been compared with standard approaches currently used in the fermentation industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo L. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, L.L., Lyettefi, E.J., Pirani, A. et al. Direct concentration and viability measurement of yeast in corn mash using a novel imaging cytometry method. J Ind Microbiol Biotechnol 38, 1109–1115 (2011). https://doi.org/10.1007/s10295-010-0890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0890-7

Keywords

Navigation