Skip to main content
Log in

Integrated biorefineries with engineered microbes and high-value co-products for profitable biofuels production

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Corn-based fuel ethanol production processes provide several advantages which could be synergistically applied to overcome limitations of biofuel processes based on lignocellulose. These include resources such as equipment, manpower, nutrients, water, and heat. The fact that several demonstration-scale biomass ethanol processes are using corn as a platform supports this viewpoint. This report summarizes the advantages of first-generation corn-based biofuel processes and then describes the technologies, advantages, and limitations of second-generation lignocellulose-based biofuel systems. This is followed by a discussion of the potential benefit of fully integrating first- and second-generation processes. We conclude with an overview of the technology improvements that are needed to enhance the profitability of biofuel production through development of an integrated biorefinery. A key requirement is creation of industrially robust, multifunctional ethanologens that are engineered for maximum ethanol production from mixed sugars. In addition to ethanol, combined biorefineries could also be the source of valuable co-products, such as chemicals and plastics. However, this will require expression systems that produce high-value co-products. Advantages of this approach are that (1) such strains could be used for bioconversion in any part of the combined biorefinery and (2) using one recombinant organism with many additions should simplify the process of obtaining necessary FDA approval for feed products produced by or containing recombinant organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

References

  • Barfoot P.; Brookes G. Global impact of biotech crops: socio-economic and environmental effects, 1996–2006. AgBioForum 111: 21–38; 2008.

    Google Scholar 

  • Baum J. A.; Bogaert T.; Clinton W.; Heck G. R.; Feldmann P.; Ilagan O.; Johnson S.; Plaetinck G.; Munyikwa T.; Pleau M.; Vaughn T.; Roberts J. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25: 1322–1326; 2007. doi:10.1038/nbt1359.

    Article  PubMed  CAS  Google Scholar 

  • Bothast R. J.; Schlicher M. A. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67: 19–25; 2005. doi:10.1007/s00253-004-1819-8.

    Article  PubMed  CAS  Google Scholar 

  • Cardona C. A.; Sanchez O. J. Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98: 2415–2457; 2007. doi:10.1016/j.biortech.2007.01.002.

    Article  PubMed  CAS  Google Scholar 

  • Castiglioni P.; Warner D.; Bensen R. J.; Anstrom D. C.; Harrison J.; Stoecker M.; Abad M.; Kumar G.; Salvador S.; D’Ordine R.; Navarro S.; Back S.; Fernandes M.; Targolli J.; Dasgupta S.; Bonin C.; Luethy M. H.; Heard J. E. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant. Physiol. 147: 446–455; 2008. doi:10.1104/pp.108.118828.

    Article  PubMed  CAS  Google Scholar 

  • De La Torre Ugarte D. G.; English B. C.; Hellwinckel C. M.; Menard R. J.; Walsh M. E. Economic implications to the agricultural sector of increasing the production of biomass feedstocks to meet biopower, biofuels, and bioproduct demands. Institute of Agriculture, Department of Agricultural Economics, University of Tennessee, Knoxville, TN; 2007.

    Google Scholar 

  • Den Haan R.; Rose S. H.; Lynd L. R.; Van Zyl W. H. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9: 87–94; 2007. doi:10.1016/j.ymben.2006.08.005.

    Article  PubMed  CAS  Google Scholar 

  • Dien B. S.; Cotta M. A.; Jeffries T. W. Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63: 258–266; 2003. doi:10.1007/s00253-003-1444-y.

    Article  PubMed  CAS  Google Scholar 

  • Edgerton M. D. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 149: 7–13; 2009. doi:10.1104/pp.108.130195.

    Article  PubMed  CAS  Google Scholar 

  • Energy Independence and Security Act of 2007. H.R. 6, 110th US Congress, Washington, DC; 2007.

  • Energy Policy Act of 2005. Public Law 109–58, 109th US Congress, Washington, DC; 2005.

  • Food and Agricultural Policy Research Institute. FAPRI Agricultural Outlook 2007. Department of Economics, Iowa State University. World Biofuels; 2008.

  • Food and Agricultural Policy Research Institute. FAPRI Agricultural Outlook 2008. Department of Economics, Iowa State University. World Biofuels; 2009.

  • Gibbons W. R.; Westby C. A.; Dobbs T. L. A continuous, farm-scale solid-phase fermentation process for production of fuel ethanol and protein feed production from fodder beets. Biotechnol. Bioeng. 26: 1098–1107; 1984. doi:10.1002/bit.260260913.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons W. R.; Westby C. A.; Dobbs T. Intermediate-scale, semicontinuous solid-phase fermentation process for production of fuel ethanol from sweet sorghum. Appl. Env. Microbiol. 51: 115–122; 1986.

    CAS  Google Scholar 

  • Gnansounou E.; Dauriat A.; Wyman C. E. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour. Technol. 96: 985–1002; 2005. doi:10.1016/j.biortech.2004.09.015.

    Article  PubMed  CAS  Google Scholar 

  • Goldemberg J. Ethanol for a sustainable energy future. Science 315: 808–810; 2007. doi:10.1126/science.1137013.

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Hägerdal B.; Karhumoa K.; Fonseca C.; Spencer-Martins I.; Gorwa-Grauslund M. F. Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74: 937–953; 2007. doi:10.1007/s00253-006-0827-2.

    Article  PubMed  CAS  Google Scholar 

  • Hill J.; Nelson E.; Tilman D.; Polasky S.; Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U. S. A. 103: 11206–11210; 2006. doi:10.1073/pnas.0604600103.

    Article  PubMed  CAS  Google Scholar 

  • Hobbs, A. Biomass and biofuels—successful implementation of CHP. The role of CHP in Florida’s Energy Future, Jacksonville, FL; 2008.

  • Kheshgi H. S.; Prince R. C. Sequestration of fermentation CO2 from ethanol production. Energy 30: 1865–1871; 2005. doi:10.1016/j.energy.2004.11.004.

    Article  CAS  Google Scholar 

  • Kojima, M.; Johnson, T. Potential for biofuels for transport in developing countries. The International Bank for Reconstruction and Development, The World Bank, Energy Sector Management Assistance Programme Report; 2005.

  • Kumar R.; Singh S.; Singh O. V. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35: 377–391; 2008. doi:10.1007/s10295-008-0327-8.

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman, C. P. Management and genetic characterization of agricultural and biotechnological microbial resources. Accession Numbers 408614 and 413230. Microbial Genomics and Bioprocessing Research Unit, USDA, ARS, NCAUR; 2009.

  • Lynd L. R.; Van Zyl W. H.; McBride J. E.; Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16: 577–583; 2005. doi:10.1016/j.copbio.2005.08.009.

    Article  PubMed  CAS  Google Scholar 

  • McAloon, A. Supergroup chemical engineering and cost evaluations of biofuels processes. USDA, ARS, Eastern Regional Research Center; 2009.

  • Nelson D. E.; Repetti P. P.; Adams T. R.; Creelman R. A.; Wu J.; Warner D. C.; Anstrom D. C.; Bensen R. J.; Castiglioni P. P.; Donnarummo M. G.; Hinchey B. S.; Kumimoto R. W.; Maszle D. R.; Canales R. D.; Krolikowski K. A.; Dotson S. B.; Gutterson N.; Ratcliffe O. J.; Heard J. E. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc. Natl. Acad. Sci. 104: 16450–16455; 2007. doi:10.1073/pnas.0707193104.

    Article  PubMed  CAS  Google Scholar 

  • Parkin, G.; Weyer, P.; Just, C. L. Riding the bioeconomy wave: smooth sailing or rough water for the environment and public health? Proceedings of the 2007 Iowa Water Conference—Water and Bioenergy. Iowa State Center, Ames, I.A.; 2007.

  • Perlack, R. D.; Wright, L. L.; Turhollow, A. F.; Graham, R. L.; Stokes, B. J.; Erbach, D. C. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. A joint study sponsored by US Department of Energy and US Department of Agriculture; 2005.

  • Phillips, S.; Aden, A.; Jechura, J.; Dayton, D.; Eggeman, T. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. Technical Report NREL/TP-510-41168. National Renewable Energy Laboratory, Golden, C.O.; 2007.

  • Renewable Fuels Association. Ethanol industry statistics. http://www.ethanolrfa.org/industry/statistics. Cited 25 Jan 2009; 2009.

  • Saha B. C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279–291; 2003. doi:10.1007/s10295-003-0049-x.

    Article  PubMed  CAS  Google Scholar 

  • Shapouri, H.; Duffield, J.; McAloon, A.; Wang, M. The 2001 net energy balance of corn–ethanol. USDA/Economic Research Service, Office of Energy, USDA/USDOE Report. Washington, DC; 2004.

  • Shapouri, H.; Duffield, J. A.; Graboski, M. S. Estimating the net energy balance of corn–ethanol. USDA/Economic Research Service, Office of Energy, Agriculture Economic Report No. 721. Washington, DC; 1995.

  • Shapouri, H.; Salassi, M.; Fairbanks, J. N. The economic feasibility of ethanol production from sugar in the United States. Washington, Office of Energy Policy and New Uses, Office of the Chief Economist, United States Department of Agriculture/Baton Rouge, Louisiana State University; 2006.

  • Sims R.; Taylor M.; Saddler J.; Mabee W. From 1st to 2nd generation biofuel technologies—an overview of current industry and RD&D activities. International Energy Agency, Paris, France; 2008.

    Google Scholar 

  • Troyer F. A. Adaptedness and heterosis in corn and mule hybrids. Crop Sci. 46: 528–543; 2006. doi:10.2135/cropsci2005.0065.

    Article  Google Scholar 

  • USDA Economic Research Service. Economics of various cropping systems economics study of biofuels production. http://www.ers.usda.gov;/ Cited 25; Jan 2009.

  • USDA National Agricultural Statistical Service. Volume and cost of agricultural products each year. http://www.nass.usda.gov; Cited 25; Jan 2009.

  • Van Maris A. J. A.; Abbott D. A.; Bellissimi E.; van den Brink J.; Kuyper M.; Luttik M. A. H.; Wisselink H. W.; Scheffers W. A.; van Dijken J. P.; Pronk J. T. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90: 391–418; 2006. doi:10.1007/s10482-006-9085-7.

    Article  PubMed  CAS  Google Scholar 

  • Varga E.; Schmidt A. S.; Reczey K.; Thomsen A. B. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Appl. Biochem. Biotechnol. 104: 37–50; 2003. doi:10.1385/ABAB:104:1:37.

    Article  PubMed  CAS  Google Scholar 

  • Vermerris W.; Saballos A.; Ejeta G.; Mosier N. S.; Ladisch N. R.; Carpita N. C. Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci. 47: S142–S153; 2007. doi:doi:10.2135/cropsci2007.04.0013IPBS.

    Article  Google Scholar 

  • Westcott, P. C. Ethanol expansion in the United States: how will the agricultural sector adjust? FDS-07D-01. United States Department of Agriculture, Economic Research Service; 2007.

  • Wheals A. E.; Basso L. C.; Alves D. M. G.; Amorim H. V. Fuel ethanol after 25 yr. TIBTECH 17: 482–487; 1999. doi:10.1016/S0167-7799(99)01384-0.

    CAS  Google Scholar 

  • Wilkins M. R.; Mueller M.; Eichling S.; Banat I. M. Fermentation of xylose by the thermotolerant yeast strains Kluveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochem. 43: 346–350; 2008. doi:10.1016/j.procbio.2007.12.011.

    Article  CAS  Google Scholar 

  • Wilts A. R.; Reicosky D. C.; Allmaras R. R.; Clapp C. E. Long-term corn residue effects: harvest alternatives, soil carbon turnover, and root-derived carbon. Soil. Sci. Soc. Am. J. 68: 1342–1351; 2004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Gibbons.

Additional information

Editor: Prakash Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbons, W.R., Hughes, S.R. Integrated biorefineries with engineered microbes and high-value co-products for profitable biofuels production. In Vitro Cell.Dev.Biol.-Plant 45, 218–228 (2009). https://doi.org/10.1007/s11627-009-9202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9202-1

Keywords

Navigation