Skip to main content
Log in

Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This work aims to evaluate the fermentability of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing using Candida guilliermondii FTI 20037 yeast. The inoculum was obtained from yeast culture in a medium containing glucose as a carbon source supplemented with rice bran extract, CaCl2·2H2O and (NH4)2SO4 in 50 mL Erlenmeyer flasks, containing 20 mL of medium, initial 5.5 pH under agitation of an orbital shaker (200 rpm) at 30°C for 24 h. The cellulosic hydrolysates, prior to being used as a fermentation medium, were autoclaved for 15 min at 0.5 atm and supplemented with the same nutrients employed for the inoculum, except the glucose, using the same conditions for the inoculum, but with a period of 48 h. Preliminary results showed the highest consumption of glucose (97%) for all the hydrolysates, at 28 h of fermentation. The highest concentration of ethanol (20.5 g/L) was found in the procedure of sugarcane bagasse pretreated by hydrothermal processing (195°C/10 min in 20 L reactor) and delignificated with NaOH 1.0% (w/v), 100°C, 1 h in 500 mL stainless steel ampoules immersed in an oil bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arruda PV, Felipe MGA (2009) Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii. Curr Microbiol 58:274–278. doi:10.1007/s00284-008-9321-7

    Article  PubMed  CAS  Google Scholar 

  2. Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels 1–11. doi:10.1186/1754-6834-3-1

  3. Carrasco F, Roy C (1992) Kinetic study of dilute-acid prehydrolysis of xylan-containing biomass. Wood Sci Technol 26:189–208

    CAS  Google Scholar 

  4. Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57:191–202

    Article  CAS  Google Scholar 

  5. Gouveia ER, Nascimento RT, Souto-Maior AM, Rocha GJM (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quim Nova 32:1500–1503

    Article  CAS  Google Scholar 

  6. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    Article  PubMed  CAS  Google Scholar 

  7. Himmel ME, Ding S, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Article  PubMed  CAS  Google Scholar 

  8. Krishnan C, Sousa LC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng. doi:10.1002/bit.22824

    PubMed  Google Scholar 

  9. Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). Proc Natl Acad Sci USA 106:1368–1373. doi:10.1073/pnas.0812364106

    Article  PubMed  CAS  Google Scholar 

  10. Mandels M, Andreotti R, Roche C (1976) Biotechnol Bioeng Symp 6: 21–33

    Google Scholar 

  11. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  12. Mongkolthanaruk W, Dharmsthiti S (2002) Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. Int Biodeterior Biodegrad 50:101–105

    Article  CAS  Google Scholar 

  13. Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicelluloses and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb Technol 43:124–129. doi:10.1016/j.enzmictec.2007.11.006

    Article  CAS  Google Scholar 

  14. Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98:2503–2510. doi:10.1016/j.biortech.2006.09.003

    Article  PubMed  Google Scholar 

  15. Petersen MO, Larsen J, Thomsen MH (2009) Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy 33:834–840. doi:10.1016/j.biombioe.2009.01.004

    Article  CAS  Google Scholar 

  16. Ramos LP, Nazhad MM, Saddler JN (1993) Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues. Enzyme Microb Technol 15:821–831. doi:10.1016/0141-0229(93)90093-H

    Article  CAS  Google Scholar 

  17. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23:22–27. doi:10.1016/j.tibtech.2004.11.002

    Article  PubMed  CAS  Google Scholar 

  18. Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feed stocks. Bioresour Technol 99:5270–5295. doi:10.1016/j.biortech.2007.11.013

    Article  PubMed  Google Scholar 

  19. Sene L, Felipe MGA, Vitolo M, Silva SS, Mancilha IM (1998) Adaptation and reutilization of Candida guilliermondii cells for xylitol production in bagasse hydrolysate. J Basic Microbiol 38:61–69

    Article  PubMed  CAS  Google Scholar 

  20. Zhang C, Lau MW, Balan V, Dale BE, Yuan YJ (2009) Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol 84:667–676. doi:10.1007/s00253-009-2001-0

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). The authors are grateful to Novozymes Latin America Ltda for the supply of the enzymes used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinícius F. N. Silva.

Additional information

This article is based on a presentation at the 32nd Symposium on Biotechnology for Fuels and Chemicals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, V.F.N., Arruda, P.V., Felipe, M.G.A. et al. Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J Ind Microbiol Biotechnol 38, 809–817 (2011). https://doi.org/10.1007/s10295-010-0815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0815-5

Keywords

Navigation