Skip to main content
Log in

Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A cytochrome P450 monooxygenase (P450SMO) from Rhodococcus sp. can catalyze asymmetric oxygenation of sulfides to S-sulfoxides. However, P450SMO-catalyzed biotransformations require a constant supply of NAD(P)H, the expense of which constitutes a great hindrance for this enzyme application. In this study, we investigated the asymmetric oxygenation of sulfide to S-sulfoxide using E. coli cells, which co-express both the P450SMO gene from Rhodococcus sp. and the glucose dehydrogenase (GDH) gene from Bacillus subtilis, as a catalyst. The results showed that the catalytic performance of co-expression systems was markedly improved compared to the system lacking GDH. When using recombinant E. coli BL21 (pET28a-P450-GDH) whole cell as a biocatalyst, NADPH was efficiently regenerated when glucose was supplemented in the reaction system. A total conversion of 100% was achieved within 12 h with 2 mM p-chlorothioanisole substrate, affording 317.3 mg/L S-sulfoxide obtained. When the initial sulfide concentration was increased to 5 mM, the substrate conversion was also increased nearly fivefold: S-sulfoxide amounted to 2.5 mM (396.6 mg/L) and the ee value of sulfoxide product exceeded 98%. In this system, the effects of glucose concentration and substrate concentration were further investigated for efficient biotransformation. This system is highly advantageous for the synthesis of optically pure S-sulfoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mata EG (1996) Recent advances in the synthesis of sulfoxides from sulfides. Phosphorus Sulfur Silicon Relat Elem 117:231–286

    Article  CAS  Google Scholar 

  2. Fernández I, Khiar N (2003) Recent developments in the synthesis and utilization of chiral sulfoxides. Chem Rev 103:3651–3705

    Article  PubMed  Google Scholar 

  3. Holland HL (1988) Chiral sulfoxidation by biotransformation of organic sulfides. Chem Rev 88:473–485

    Article  CAS  Google Scholar 

  4. Holland HL (1992) Organic synthesis with oxidative enzymes. VCH, New York, p 255

    Google Scholar 

  5. Holland HL (2001) Biotransformation of organic sulfides. Nat Prod Rep 18:171–181

    Article  PubMed  CAS  Google Scholar 

  6. Holland HL, Brown FM, Kerridge A, Penkos P, Arensdor J (2003) Biotransformation of sulfides by Rhodococcus erythropolis. J Mol Catal B: Enzymatic 22:219–223

    Article  CAS  Google Scholar 

  7. Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:3003.1–3003.9

    Article  Google Scholar 

  8. Hamman MABD, Haehner-Daniels SA, Wrighton AE, Rettie Hall SD (2000) Stereoselective sulfoxidation of sulindac sulfide by flavin-containing monooxygenases. Comparison of human liver and kidney microsomes and mammalian enzymes. Biochem Pharmacol 60:7–17

    Article  PubMed  CAS  Google Scholar 

  9. Fruetel J, Chang YT, Collins J, Loew G, Ortiz de Montellano PR (1994) Thioanisole sulfoxidation by cytochrome P450cam (CYP101): experimental and calculated absolute stereochemistries. J Am Chem Soc 116:11643–11648

    Article  CAS  Google Scholar 

  10. Zhang JD, Li AT, Yang Y, Xu JH (2009) Sequence analysis and heterologous expression of a new cytochrome P450 monooxygenase from Rhodococcus sp. for asymmetric sulfoxidation. Appl Microbiol Biotechnol 85:615–624

    Article  PubMed  Google Scholar 

  11. Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ (2002) Identification of a new class of cytochrome P450 from a Rhodococcus sp. J Bacteriol 184:3898–3908

    Article  PubMed  CAS  Google Scholar 

  12. Roberts GA, Celik A, Hunter DJ, Ost TW, White JH, Chapman SK, Turner NJ, Flitsch SL (2003) A self-sufficient cytochrome P450 with a primary structural organization that includes a flavin domain and a [2Fe-2S] redox center. J Biol Chem 278:48914–48920

    Article  PubMed  CAS  Google Scholar 

  13. Liu L, Schmid RD, Urlacher VB (2006) Cloning, expression, and characterization of a self-sufficient cytochrome P450 monooxygenase from Rhodococcus ruber DSM 44319. Appl Microbiol Biotechnol 72:876–882

    Article  PubMed  CAS  Google Scholar 

  14. Itamar W, Daniel M (1989) Enzyme-catalyzed biotransformations through photochemical regeneration of nicotinamide cofactors. Enzyme Microb Technol 11:467–483

    Article  Google Scholar 

  15. Chen G, Kayser MM, Milhovilovic MD, Mrstik ME, Martinez CA, Stewart JD (1999) Asymmetric oxidations at sulfur catalyzed by engineered strains that overexpress cyclohexanone monooxygenase. New J Chem 23:827–832

    Article  CAS  Google Scholar 

  16. Xu ZN, Liu Y, Fang LM, Jiang XX, Jing KJ, Cen PL (2006) Construction of a two-strain system for asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to (S)-4-chloro-3-hydroxybutanoate ethyl ester. Appl Microbiol Biotechnol 70:40–46

    Article  PubMed  CAS  Google Scholar 

  17. Xu ZN, Jing KJ, Liu Y, Cen PL (2007) High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J Ind Microbiol Biotechnol 34:83–90

    Article  PubMed  CAS  Google Scholar 

  18. Yang W, Zhang L, Lu Z, Tao W, Zhai Z (2001) A new method for protein coexpression in Escherichia coli using two incompatible plasmids. Protein Expr Purif 22:472–478

    Article  PubMed  CAS  Google Scholar 

  19. Wang FH, Qu HJ, Zhang DW, Tian PF, Tan TW (2007) Production of 1, 3-propanediol from glycerol by recombinant E. coli using incompatible plasmids system. Mol Biotechnol 37:112–119

    Article  PubMed  CAS  Google Scholar 

  20. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    PubMed  CAS  Google Scholar 

  21. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  22. Li AT, Zhang JD, Xu JH, Lu WY, Lin GQ (2009) Isolation of Rhodococcus sp. ECU0066: a new sulfide monooxygenase producing strain for asymmetric sulfoxidation. Appl Environ Microbiol 75:551–556

    Article  PubMed  CAS  Google Scholar 

  23. Mikolajczyk M, Drabowicz J, Kielbasinski P (1997) Chiral sulfur reagents; Applications in asymmetric and stereoselective synthesis. CRC Press, Boca Raton

    Google Scholar 

  24. Kataoka M, Kita K, Wada M, Yasohara Y, Hasegawa J, Shimizu S (2003) Novel bioreduction system for the production of chiral alcohols. Appl Microbiol Biotechnol 62:437–445

    Article  PubMed  CAS  Google Scholar 

  25. Ernst M, Kaup B, Müller M, Bringer-Meyer S, Sahm H (2005) Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Appl Microbiol Biotechnol 66:629–634

    Article  PubMed  CAS  Google Scholar 

  26. Weckbecker A, Hummel W (2005) Glucose dehydrogenase for the regeneration of NADPH and NADH. Methods Biotechnol 17:225–237

    Google Scholar 

  27. Zambianchi F, Pasta P, Carrea G, Colonna S, Gaggero N, Woodley JM (2002) Use of isolated cyclohexanone monooxygenase from recombinant Escherichia coli as a biocatalyst for Baeyer-Villiger and sulfide oxidations. Biotechnol Bioeng 78:489–496

    Article  PubMed  CAS  Google Scholar 

  28. Alphand V, Carrea G, Wohlgemuth R, Furstoss R, Woodley JM (2003) Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol 21:318–323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant Nos. 20506037 & 20672037&20902023), Ministry of Science and Technology, P.R. China (grant Nos. 2006AA02Z205 & 2007AA02Z225) and China National Special Fund for State Key Laboratory of Bioreactor Engineering (grant No. 2060204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-He Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JD., Li, AT., Yu, HL. et al. Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes. J Ind Microbiol Biotechnol 38, 633–641 (2011). https://doi.org/10.1007/s10295-010-0809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0809-3

Keywords

Navigation