Skip to main content
Log in

Chicken feathers: a complex substrate for the co-production of α-amylase and proteases by B. licheniformis NH1

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This study is concerned with the co-production of alkaline proteases and thermostable α-amylase by some feather-degrading Bacillus strains: B. mojavensis A21, B. licheniformis NH1, B. subtilis A26, B. amyloliquefaciens An6 and B. pumilus A1. All strains produced both enzymes, except B. pumilus A1, which did not exhibit amylolytic activity. The best enzyme co-production was obtained by the NH1 strain when chicken feathers were used as nitrogen and carbon sources in the fermentation medium. The higher co-production of both enzymes by B. licheniformis NH1 strain was achieved in the presence of 7.5 g/l chicken feathers and 1 g/l yeast extract. Strong catabolic repression on protease and α-amylase production was observed with glucose. Addition of 0.5% glucose to the feather medium suppressed enzyme production by B. licheniformis NH1. The growth of B. licheniformis NH1 using chicken feathers as nitrogen and carbon sources resulted in its complete degradation after 24 h of incubation at 37°C. However, maximum protease and amylase activities were attained after 30 h and 48 h, respectively. Proteolytic activity profiles of NH1 enzymatic preparation grown on chicken feather or casein-based medium are different. As far as we know, this is the first contribution towards the co-production of α-amylase and proteases using keratinous waste. Strain NH1 shows potential use for biotechnological processes involving keratin hydrolysis and industrial α-amylase and proteases co-production. Thus, the utilization of chicken feathers may result in a cost-effective process suitable for large-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Papadopoulos MC (1989) Effect of processing on high-protein feed stuffs: a review. Biol Wastes 29:123–138

    Article  Google Scholar 

  2. Steiner RJ, Kellems RO, Church DC (1983) Feather and hair meals for ruminants IV. Effects of chemical treatments of feathers and processing time on digestibility. J Ani Sci 57:495–502

    Google Scholar 

  3. Syed DG, Lee JC, Li WJ, Kim CJ, Agasar D (2009) Production, characterization and application of keratinase from Streptomyces gulbargensis. Biores Technol 100:1868–1871

    Article  CAS  Google Scholar 

  4. Ignatova Z, Gousterova A, Spassov G, Nedkov P (1999) Isolation and partial characterization of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can J Microbiol 45:217–222

    Article  CAS  PubMed  Google Scholar 

  5. Sangali S, Brandelli A (2000) Feather keratin hydrolysis by a Vibrio sp. strain kr2. J Appl Microbiol 89:735–743

    Article  CAS  PubMed  Google Scholar 

  6. Daroit DJ, Correa APF, Brandelli A (2009) Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Inter Biodet Biod 63:358–363

    Article  CAS  Google Scholar 

  7. Williams CM, Richter CS, MacKenzie JM, Shih JCH (1990) Isolation, identification, and characterization of a feather-degrading bacterium. Appl Env Microbio 56:1509–1515

    CAS  Google Scholar 

  8. Friedrich J, Kern S (2003) Hydrolysis of native proteins by keratinolytic protease of Doratomyces microsporus. J Mol Catal B Enz 21:35–37

    Article  CAS  Google Scholar 

  9. Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116

    Article  Google Scholar 

  10. Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen QD, Rezessy-Szabo JM, Claeyssens M, Stals I, Hoschke AP (2002) Purification and characterization of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enz Microb Technol 31:345–352

    Article  CAS  Google Scholar 

  12. Joo HS, Chang CS (2005) Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem 40:1263–1270

    Article  CAS  Google Scholar 

  13. El Hadj-Ali N, Agrebi R, Ghorbel-Frikha B, Sellami-Kamoun A, Kanoun S, Nasri M (2007) Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NH1. Enz Microb Technol 40:515–523

    Article  CAS  Google Scholar 

  14. Haddar A, Bougatef A, Agrebi R, Sellami-Kamoun A, Nasri M (2009) A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21 purification and characterization. Process Biochem 44:29–35

    Article  CAS  Google Scholar 

  15. Agrebi R, Haddar A, Hajji M, Frikha F, Manni L, Jellouli K, Nasri M (2009) Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: characterization and statistical media optimization. Can J Microbiol 55:1049–1061

    Article  CAS  PubMed  Google Scholar 

  16. Agrebi R, Hmidet N, Hajji M, Haddar A, Fakhfakh-Zouari N, Nasri M (2009) Fibrinolytic serine-protease from Bacillus amyloliquefaciens An6 grown on Mirabilis jalapa tuber powders: production, partial purification and biochemical characterization. Appl Biochem Biotechnol 162:75–88

    Article  PubMed  Google Scholar 

  17. Fakhfakh-Zouari N, Hmidet N, Haddar A, Kanoun S, Nasri M (2009) A novel serine-metallo keratinase from a newly isolated Bacillus pumilus A1 grown on chicken feather meal: biochemical and molecular characterization. Appl Biochem Biotechnol 162:329–344

    Article  PubMed  Google Scholar 

  18. Kembhavi AA, Kulharni A, Pant AA (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No.64. Appl Biochem Biotechnol 38:83–92

    Article  CAS  PubMed  Google Scholar 

  19. Miller GL (1959) Use of dinitrosalycilic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  20. Parka GT, Son HJ (2007) Keratinolytic activity of Bacillus megaterium F7–1, a feather-degrading mesophilic bacterium. Microbiol Res 164:478–485

    Article  Google Scholar 

  21. Hmidet N, Bayoudh A, Berrin JG, Kanoun S, Juge N, Nasri M (2008) Purification and biochemical characterization of a novel α-amylase from Bacillus licheniformis NH1. Cloning, nucleotide sequence and expression of amyN gene in E. coli. Process Biochem 43:499–510

    Article  CAS  Google Scholar 

  22. Kelly CT, Bolton DJ, Fogarty WM (1997) Bi-phasic production of α-amylase of Bacillus flavothermus in batch fermentation. Biotechnol Lett 19:675–677

    Article  CAS  Google Scholar 

  23. Emanuilova EI, Toda K (1984) α-amylase production in batch and continuous cultures by Bacillus caldolyticus. Appl Microbiol Biotechnol 19:301–305

    Article  CAS  Google Scholar 

  24. Welker NE, Campbell LL (1963) Effect of carbon sources on formation of α-amylase by Bacillus stearothermophilus. J Bacteriol 86:681–686

    CAS  PubMed  Google Scholar 

  25. Krishnan T, Chandra AK (1982) Effect of oilseed cakes on α-amylase production by Bacillus licheniformis CUMC 305. Appl Environ Microbiol 44:270–274

    CAS  PubMed  Google Scholar 

  26. Pratima B, Umender S (1989) Production of α-amylase in a low cost medium by Bacillus licheniformis TCRDC-B13. J Ferment Bioeng 67:422–423

    Article  Google Scholar 

  27. Mamo G, Gessesse A (1999) Effect of cultivation conditions on growth and alpha-amylase production by a thermophilic Bacillus sp. Lett App Microbiol 29:61–65

    Article  CAS  Google Scholar 

  28. Zhang Q, Tsukagoshi N, Miyashiro S, Udaka S (1983) Increased production of α-amylase by Bacillus amyloliquefaciens in the presence of glycine. Appl Environ Microbiol 46:293–295

    CAS  PubMed  Google Scholar 

  29. Kalisz HM (1988) Microbial proteinases. Adv Biochem Eng Biotechnol 36:1–65

    CAS  PubMed  Google Scholar 

  30. Hamilton LM, Kelly CT, Fogarty WM (1999) Production and properties of the raw starch-digesting α-amylase of Bacillus sp. IMD435. Process Biochem 35:27–31

    Article  CAS  Google Scholar 

  31. Hillier P, Wase DAJ, Emery AN (1996) Production of α-amylase (E.C.3.2.1.1) by Bacillus amyloliquefaciens in batch and continuous culture using a defined synthetic medium. Biotechnol Lett 18:795–800

    Article  CAS  Google Scholar 

  32. Mai NT, Giang DT, Minh NTN, Thao VT (1992) Thermophilic amylase producing bacteria from Vietnamese soils. World J Microbiol Biotechnol 8:505–508

    Article  CAS  Google Scholar 

  33. Johnvesly B, Naik GR (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem 37:139–144

    Article  CAS  Google Scholar 

  34. El-Refai HA, Abdel Naby MA, Gaballa A, El-Araby MH, Abdel Fattah AF (2005) Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Process Biochem 40:2325–2332

    Article  CAS  Google Scholar 

  35. Kaul S, Sumbali G (1997) Keratinolysis by poultry farm soil fungi. Myco-pathologia 139:137–140

    CAS  Google Scholar 

  36. Patel R, Dodia M, Singh SP (2005) Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: production and optimization. Process Biochem 40:3569–3575

    Article  CAS  Google Scholar 

  37. Lin X, Lee C, Casale ES, Shih JCH (1992) Purification and characterization of a keratinase from a feather degrading Bacillus licheniformis strain. Appl Environ Microbiol 58:3271–3275

    CAS  PubMed  Google Scholar 

  38. Evans KL, Crowder J, Miller ES (2000) Subtilisins of Bacillus sp. hydrolyze keratin and allow growth on feathers. Can J Microbiol 46:1004–1011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noomen Hmidet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hmidet, N., El Hadj Ali, N., Zouari-Fakhfakh, N. et al. Chicken feathers: a complex substrate for the co-production of α-amylase and proteases by B. licheniformis NH1. J Ind Microbiol Biotechnol 37, 983–990 (2010). https://doi.org/10.1007/s10295-010-0792-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0792-8

Keywords

Navigation