Skip to main content
Log in

Expression and characterization of a novel heterologous moderately thermostable lipase derived from metagenomics in Streptomyces lividans

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Seven lipolytic genes were isolated and sequenced from a metagenomic library that was constructed following biomass enrichment in a fed-batch bioreactor submitted to high temperature (50–70°C) and alkaline pH (7–8.5). Among those sequences, lipIAF1-6 was chosen for further study and cloned in Streptomyces lividans 10–164. The G+C content within the sequence was 64.3%. The encoded protein, LipIAF1-6, was related to various putative lipases previously identified in different genome sequences. Homology of LipIAF-6 with the different lipases did not exceed 31%. The optimum pH (8.5) and temperature (60°C) of the purified enzyme were in agreement with the enrichment conditions. Furthermore, the enzyme was thermostable for as long as 30 min at 70°C. The maximum activity of the purified lipase was 4,287 IU/mg towards p-nitrophenyl (p-NP) butyrate (60°C; pH 8.5). LipIAF1-6 does not seem to need the presence of metal ions for its activity. The enzyme was slightly inhibited by 10 mM CoCl2 (14%), HgCl2 (12%), and dithiothreitol (DTT) (15%). The serine protease inhibitor phenylmethylsulphonyl fluoride (PMSF) reduced activity by 39% and 71% when incubated at concentrations of 1 and 10 mM, respectively. Finally, LipIAF1-6 was stable in different organic solvents, and against several surfactants and oxidative agents commonly found in detergent formulations. These results are quite encouraging for further use of this enzyme in different industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Fattah YR, Gaballa AA (2008) Identification and over-expression of a thermostable lipase from Geobacillus thermoleovorans Toshki in Escherichia coli. Microbiol Res 163(1): 13–20. doi:10.1016/j.micres.2006.02.004

  2. Alloue WA, Aguedo M, Destain J, Ghalfi H, Blecker C et al (2008) Les lipases immobilisées et leurs applications. Biotechnol Agron Soc Environ 12(1):57–68

    CAS  Google Scholar 

  3. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  PubMed  Google Scholar 

  4. Bora L, Kalita MC (2007). Production and optimization of thermostable lipase from a thermophilic Bacillus sp. LBN 4. Int J Microbiol 4(1)

  5. Boston M, Requadt C, Danko S, Jarnagin A, Ashizawa E et al (1997) Structure and function engineered Pseudomonas mendocina lipase. Methods Enzymol 284:298–317

    Article  CAS  PubMed  Google Scholar 

  6. Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N (1998) A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11–1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64(2):486–491

    CAS  PubMed  Google Scholar 

  7. Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23(6):321–329. doi:10.1016/j.tibtech.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  8. Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5(2):144–151

    Article  CAS  PubMed  Google Scholar 

  9. Diaz M, Ferreras E, Moreno R, Yepes A, Berenguer J, Santamaria R (2008) High-level overproduction of Thermus enzymes in Streptomyces lividans. Appl Microbiol Biotechnol 79(6):1001–1008. doi:10.1007/s00253-008-1495-1

    Article  CAS  PubMed  Google Scholar 

  10. Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira JD et al (2006) Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Environ Microbiol 72(5):3637–3645. doi:10.1128/Aem.72.5.3637-3645.2006

    Article  CAS  PubMed  Google Scholar 

  11. Entcheva P, Liebl W, Johann A, Hartsch T, Streit WR (2001) Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 67 (1):89–99. doi:10.1128/AEM.67.1.89-99.2001

    Google Scholar 

  12. Fan Z, Yue C, Tang Y, Zhang Y (2009) Cloning, sequence analysis and expression of bacterial lipase-coding DNA fragments from environment in Escherichia coli. Mol Biol Rep 36(6):1515–1519. doi:10.1007/s11033-008-9344-y

    Article  CAS  PubMed  Google Scholar 

  13. Fickers P, Destain J, Thonart P (2008) Les lipases sont des hydrolases atypiques: principales caractéristiques et applications. Biotechnol Agron Soc Environ 12(2):119–130

    CAS  Google Scholar 

  14. Fojan P, Jonson PH, Petersen MTN, Petersen SB (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82(11):1033–1041

    Article  CAS  PubMed  Google Scholar 

  15. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669. doi:10.1128/Mbr.68.4.669-685.2004

    Article  CAS  PubMed  Google Scholar 

  16. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microbiol Technol 39(2):235–251. doi:10.1016/j.enzmictec.2005.10.016

    Article  CAS  Google Scholar 

  17. Healy FG, Ray RM, Aldrich HC, Wilkie AC, Ingram LO, Shanmugam KT (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl Microbiol Biotechnol 43(4):667–674

    Article  CAS  PubMed  Google Scholar 

  18. Henne A, Schmitz RA, Bomeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66(7):3113–3116

    Article  CAS  PubMed  Google Scholar 

  19. Hurtubise Y, Shareck F, Kluepfel D, Morosoli R (1995) A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins. Mol Microbiol 17(2):367–377

    Article  CAS  PubMed  Google Scholar 

  20. Ishida M, Yoshida M, Oshima T (1997) Highly efficient production of enzymes of an extreme thermophile, Thermus thermophilus: a practical method to overexpress GC-rich genes in Escherichia coli. Extremophiles 1(3):157–162

    Article  CAS  PubMed  Google Scholar 

  21. Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Ann Rev Microbiol 53:315–351

    Google Scholar 

  22. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13(4):390–397

    Article  CAS  PubMed  Google Scholar 

  23. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15(1):29–63

    Article  CAS  PubMed  Google Scholar 

  24. Kademi A, Ait-Abdelkader N, Fakhreddine L, Baratti J (2000) Purification and characterization of a thermostable esterase from the moderate thermophile Bacillus circulans. Appl Microbiol Biotechnol 54(2):173–179

    Article  CAS  PubMed  Google Scholar 

  25. Kim YJ, Choi GS, Kim SB, Yoon GS, Kim YS, Ryu YW (2006) Screening and characterization of a novel esterase from a metagenomic library. Protein Expr Purif 45(2):315–323. doi:10.1016/j.pep.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  26. Lee MH, Lee CH, Oh TK, Song JK, Yoon JH (2006) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 72(11):7406–7409. doi:10.1128/Aem.01157-06

    Article  CAS  PubMed  Google Scholar 

  27. Li H, Zhang X (2005) Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expr Purif 42(1):153–159. doi:10.1016/j.pep.2005.03.011

    Article  PubMed  Google Scholar 

  28. Li X, Qin L (2005) Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol 23(11):539–543. doi:10.1016/j.tibtech.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  29. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3(6):510–516. doi:10.1038/nrmicro1161

    Article  CAS  PubMed  Google Scholar 

  30. Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M et al (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189(6):2477–2486. doi:10.1128/JB.01899-06

    Article  CAS  PubMed  Google Scholar 

  31. Mead DA, Szczesna-Skorupa E, Kemper B (1986) Single-stranded DNA ‘blue’ T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng 1(1):67–74

    Article  CAS  PubMed  Google Scholar 

  32. Meilleur C, Hupe JF, Juteau P, Shareck F (2009) Isolation and characterization of a new alkali-thermostable lipase cloned from a metagenomic library. J Ind Microbiol Biotechnol 36(6):853–861

    Article  CAS  PubMed  Google Scholar 

  33. Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51(6):711–729

    Article  CAS  PubMed  Google Scholar 

  34. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    CAS  PubMed  Google Scholar 

  35. Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 26(6):576–590. doi:10.1016/j.biotechadv.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  36. Rashid N, Shimada Y, Ezaki S, Atomi H, Imanaka T (2001) Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 67(9):4064–4069

    Article  CAS  PubMed  Google Scholar 

  37. Rosenau F, Jaeger KE (2000) Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82(11):1023–1032

    Article  CAS  PubMed  Google Scholar 

  38. Rossi M, Ciaramella M, Cannio R, Pisani FM, Moracci M, Bartolucci S (2003) Extremophiles 2002. J Bacteriol 185(13):3683–3689. doi:10.1128/Jb.185.13.3683-3689.2003

    Article  CAS  PubMed  Google Scholar 

  39. Ruiz C, Javier Pastor FI, Diaz P (2003) Isolation and characterization of Bacillus sp. BP-6 LipA, a ubiquitous lipase among mesophilic Bacillus species. Lett Appl Microbiol 37(4):354–359

    Google Scholar 

  40. Salameh MA, Wiegel J (2007) Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl Environ Microbiol 73(23):7725–7731. doi:10.1128/AEM.01509-07

    Article  CAS  PubMed  Google Scholar 

  41. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75(5):955–962. doi:10.1007/s00253-007-0945-5

    Article  CAS  PubMed  Google Scholar 

  42. Sharma AK, Tiwari RP, Hoondal GS (2001) Properties of a thermostable and solvent stable extracellular lipase from a Pseudomonas sp. AG-8. J Basic Microbiol 41 (6):363–366. doi:10.1002/1521-4028(200112)41:6<363::AID-JOBM363>3.0.CO;2-C

  43. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19 (8):627–662

    Google Scholar 

  44. Sibille N, Favier A, Azuaga AI, Ganshaw G, Bott R et al (2006) Comparative NMR study on the impact of point mutations on protein stability of Pseudomonas mendocina lipase. Protein Sci 15(8):1915–1927. doi:10.1110/Ps.062213706

    Article  CAS  PubMed  Google Scholar 

  45. Snellman EA, Sullivan ER, Colwell RR (2002) Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur J Biochem 269(23):5771–5779

    Google Scholar 

  46. Soliman NA, Knoll M, Abdel-Fattah YR, Schmid RD, Lange S (2007) Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem 42(7):1090–1100. doi:10.1016/j.procbio.2007.05.005

    Article  CAS  Google Scholar 

  47. Sugihara A, Ueshima M, Shimada Y, Tsunasawa S, Tominaga Y (1992) Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. J Biochem 112(5):598–603

    CAS  PubMed  Google Scholar 

  48. Tesch C, Nikoleit K, Gnau V, Gotz F, Bormann C (1996) Biochemical and molecular characterization of the extracellular esterase from Streptomyces diastatochromogenes. J Bacteriol 178(7):1858–1865

    CAS  PubMed  Google Scholar 

  49. van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6(3):213–218. doi:10.1016/S1369-5274(03)00060-2

    Article  PubMed  Google Scholar 

  50. Wang GYS, Graziani E, Waters B, Pan WB, Li X et al (2000) Novel natural products from soil DNA libraries in a streptomycete host. Organic Lett 2(16):2401–2404. doi:10.1021/Ol005860z

    Article  CAS  Google Scholar 

  51. Yan YL, Yang J, Dou YT, Chen M, Ping SZ et al (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 105(21):7564–7569. doi:10.1073/pnas.0801093105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a Strategic Grant from the Natural Sciences and Engineering Research Council of Canada. A. Côté is a recipient of a scholarship from Fondation Armand-Frappier. We are grateful to Raymonde Jetté, Guillaume Brault and François-Xavier Lussier for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Shareck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Côté, A., Shareck, F. Expression and characterization of a novel heterologous moderately thermostable lipase derived from metagenomics in Streptomyces lividans . J Ind Microbiol Biotechnol 37, 883–891 (2010). https://doi.org/10.1007/s10295-010-0735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0735-4

Keywords

Navigation