Skip to main content
Log in

Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The microbial communities of leachate from a bioleaching heap located in China were analyzed using the 16S rRNA gene clone library and real-time quantitative PCR. Both methods showed that Leptospirillum spp. were the dominant bacteria, and Ferroplasma acidiphilum were the only archaea detected in the leachate. Clone library results indicated that nine operational taxonomic units (OTUs) were obtained, which fell into four divisions, the Nitrospirae (74%), the γ-Proteobacteria (14%), the Actinobacteria (6%) and the Euryarchaeota (6%). The results obtained by real-time PCR in some ways were the same as clone library analysis. Furthermore, Sulfobacillus spp., detected only by real-time PCR, suggests that real-time PCR was a reliable technology to study the microbial communities in bioleaching environments. It is a useful tool to assist clone library analysis, to further understand microbial consortia and to have comprehensive and exact microbiological information about bioleaching environments. Finally, the interactions among the microorganisms detected in the leachate were summarized according to the characteristics of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rawlings DE, Dew D, du Plessis C (2003) Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21:38–44. doi:10.1016/S0167-7799(02)00004-5

    Article  CAS  PubMed  Google Scholar 

  2. Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13. doi:10.1186/1475-2859-4-13

    Article  PubMed  Google Scholar 

  3. Sand W, Gehrke T, Jozsa PG, Schippers A (2001) Bio/chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59:159–175. doi:10.1016/S0304-386X(00)00180-8

    Article  CAS  Google Scholar 

  4. Lacey DT, Lawson F (1970) Kinetics of the liquid phase oxidation of acid ferrous sulphate by the bacterium Thiobacillus ferrooxidans. Biotechnol Bioeng 12:29–50. doi:10.1002/bit.260120104

    Article  CAS  Google Scholar 

  5. Johnson DB (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Methods 23:205–218. doi:10.1016/0167-7012(95)00015-D

    Article  Google Scholar 

  6. Bond PL, Druschel GK, Banfield JF (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971

    Article  CAS  PubMed  Google Scholar 

  7. Demergasso CS, Galleguillos P, Escudero G, Zepeda A, Castillo D, Casamayor EO (2005) Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80:241–253. doi:10.1016/j.hydromet.2005.07.013

    Article  CAS  Google Scholar 

  8. Xingyu L, Rongbo S, Bowei C, Biao W, Jiankang W (2009) Bacterial community structure change during pyrite bioleaching process: effect of pH and aeration. Hydrometallurgy 95:267–272. doi:10.1016/j.hydromet.2008.06.008

    Article  Google Scholar 

  9. Zhang RB, Wei MM, Ji HG, Chen XH, Qiu GZ, Zhou HB (2009) Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite. Appl Microbiol Biotechnol 81:1161–1168. doi:10.1007/s00253-008-1792-8

    Article  CAS  PubMed  Google Scholar 

  10. Renman R, Jiankang W, Jinghe C (2006) Bacterial heap-leaching: Practice in Zijinshan copper mine. Hydrometallurgy 83:77–82. doi:10.1016/j.hydromet.2006.03.048

    Article  Google Scholar 

  11. Oved T, Shaviv A, Goldrath T, Mandelbaum RT, Minz D (2001) Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 67:3426–3433. doi:10.1128/AEM.67.8.3426-3433.2001

    Article  CAS  PubMed  Google Scholar 

  12. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  13. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  14. Thompson JD, Gibson TJ, Plewniak F (1997) The ClustalX windows inferface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  15. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 1596–1599. doi:10.1093/molbev/msm092

  16. Zammit CM, Mutch LA, Watling HR, Watkin ELJ (2008) Evaluation of quantitative real-time polymerase chain reaction for enumeration of biomining microorganisms in culture. Hydrometallurgy 94:185–189. doi:10.1016/j.hydromet.2008.05.034

    Article  CAS  Google Scholar 

  17. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29:181–184. doi:10.1093/nar/29.1.181

    Article  CAS  PubMed  Google Scholar 

  18. Adams PS (2006) Data analysis and reporting. In: Dorak MT (ed) Real-time PCR. Taylor and Francis Group, Oxford, pp 39–62

    Google Scholar 

  19. Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257. doi:10.1007/s00253-003-1404-6

    Article  CAS  PubMed  Google Scholar 

  20. Coram-Uliana NJ, van Hille RP, Kohr WJ, Harrison STL (2006) Development of a method to assay the microbial population in heap bioleaching operations. Hydrometallurgy 83:237–244. doi:10.1016/j.hydromet.2006.03.054

    Article  CAS  Google Scholar 

  21. Kinnunen PHM, Puhakka JA (2004) Characterization of iron- and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indonesian auto-heating copper mine waste heap and a deep South African gold mine. J Ind Microbiol Biotechnol 31:409–414. doi:10.1007/s10295-004-0160-7

    Article  CAS  PubMed  Google Scholar 

  22. Hawkes RB, Franzmann PD, Plumb JJ (2006) Moderate thermophiles including “Ferroplasma cupricumulans” sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation. Hydrometallurgy 83:229–236. doi:10.1016/j.hydromet.2006.03.027

    Article  CAS  Google Scholar 

  23. Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13. doi:10.1099/13500872-145-1-5

    Article  CAS  PubMed  Google Scholar 

  24. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91. doi:10.1146/annurev.micro.56.012302.161052

    Article  CAS  PubMed  Google Scholar 

  25. Fowler TA, Holmes PR, Crundwell FK (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65:2987–2993

    CAS  PubMed  Google Scholar 

  26. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152. doi:10.1016/S0168-6496(03)00028-X

    Article  CAS  PubMed  Google Scholar 

  27. Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov.,sp. nov., and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic iron-oxidizing, extremely acidophilic Actinobacteria. Int J Syst Evol Microbiol 59:1082–1089. doi:10.1099/ijs.0.65409-0

    Article  CAS  PubMed  Google Scholar 

  28. González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865. doi:10.1128/AEM.69.8.4853-4865.2003

    Article  PubMed  Google Scholar 

  29. Xin-xing L, Qiang H, Xue-duan L, Guan-zhou Q (2007) Diversity of microbial community in acid mine drainage in ancient mine area. J Cent South Univ (Science and Technology) 38:414–420 (in Chinese)

    Google Scholar 

  30. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham WR, Nsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006

    CAS  PubMed  Google Scholar 

  31. Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288. doi:10.1111/j.1462-2920.2005.00861.x

    Article  CAS  PubMed  Google Scholar 

  32. Liu C-Q, Plumb J, Hendry P (2006) Rapid specific detection and quantification of bacteria and archaea involved in mineral sulfide bioleaching using real-time PCR. Biotechnol Bioeng 94:330–336. doi:10.1002/bit.20845

    Article  CAS  PubMed  Google Scholar 

  33. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635. doi:10.1128/JB.186.9.2629-2635.2004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (no. 2004CB619205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Bowei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowei, C., Xingyu, L., Wenyan, L. et al. Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate. J Ind Microbiol Biotechnol 36, 1409–1416 (2009). https://doi.org/10.1007/s10295-009-0627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0627-7

Keywords

Navigation