Skip to main content
Log in

Characterization of iron- and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indonesian auto-heating copper mine waste heap and a deep South African gold mine

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Iron- and chalcopyrite-oxidizing enrichment cultures were obtained at 50°C from acidic, high-temperature, copper/gold mine environments in Indonesia and South Africa. Over 90% copper yield was obtained from chalcopyrite concentrate with the Indonesian enrichment in 3 months with 2% solids concentration, when pH was maintained at around 2. Neither addition of silver cations nor an enhanced nutrient concentration influenced chalcopyrite leaching. Excision and sequencing of bands from denaturing gradient gel electrophoresis of the amplified partial 16S rRNA gene showed that the enrichment cultures from different environments in South Africa and Indonesia were very simple, and similar. Chalcopyrite concentrate supported a simpler and different community than Fe2+. The members of the enrichment cultures were closely related to Sulfobacillus yellowstonensis and Sulfobacillus acidophilus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alvarez A, Blázquez ML, Ballester A, González F, Salinas E, Cruells M, Roca A (1999) Bioleaching of chalcopyrite in the presence of silver: solids characterization. In: Young SK, Dreisinger DB, Hackl RP, Dixon DG (eds) Hydrometallurgy of copper. The Minerals, Metals and Materials Society, PA, pp 83–95

    Google Scholar 

  2. Anonymous (1992) In: Greenberg AE, Clesceri LS, Eaton AD (eds) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington, D.C.

  3. Bond PL, Druschel GK, Banfienld JF (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971

    Article  CAS  PubMed  Google Scholar 

  4. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  5. De GC, Oliver DJ, Pesic BM (1996) Effect of silver on the ferrous iron oxidizing ability of Thiobacillus ferrooxidans. Hydrometallurgy 41:211–229

    Article  CAS  Google Scholar 

  6. Giovannoni SJ, DeLong GJ, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligonucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726

    CAS  PubMed  Google Scholar 

  7. Goebel BM, Norris PR, Burton NP (2000) Acidophiles in biomining. In: Priest FG, Goodfellow M (eds) Applied microbial systematics. Kluwer, Dordrecht, pp 293–314

    Google Scholar 

  8. Golovacheva R, Karavaiko G (1978) New genus of thermophilic spore-forming bacteria, Sulfobacillus. Microbiology 47:658–664

    Google Scholar 

  9. Gómez C, Blázquez ML, Ballester A (1997) Influence of various factors in the bioleaching of a bulk concentrate with mesophilic microorganisms in the presence of Ag(I). Hydrometallurgy 45:271–287

    Article  Google Scholar 

  10. Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84

    Article  CAS  PubMed  Google Scholar 

  11. Hsu C-H, Harrison RG (1995) Bacterial leaching of zinc and copper from mining wastes. Hydrometallurgy 37:169–179

    Article  CAS  Google Scholar 

  12. Huber H, Stetter KO (1998) Hyperthermophiles and their possible potential in biotechnology. J Biotechnol 64:39–52

    Article  CAS  Google Scholar 

  13. Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317

    Article  CAS  Google Scholar 

  14. Johnson DB (2001) Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy 59:147–157

    Article  CAS  Google Scholar 

  15. Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  CAS  PubMed  Google Scholar 

  16. Jurgens G, Glöckner F-O, Amann R, Saano A, Montonen L, Likolammi M, Münster U (2000) Identification of novel archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56

    Article  CAS  PubMed  Google Scholar 

  17. Kinnunen PH-M, Puhakka JA (2004) High-rate ferric sulfate generation by a Leptospirillum ferriphilum dominated biofilm and the role of jarosite in biomass retainment in fluidized-bed reactor. Biotechnol Bioeng 85:697–705

    Article  CAS  PubMed  Google Scholar 

  18. Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin of T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106

    CAS  PubMed  Google Scholar 

  19. Krebs W, Brombacher C, Bosshard PP, Bachofen R, Brandl H (1997) Microbial recovery of metals from solids. FEMS Microbiol Rev 20:605–617

    Article  CAS  Google Scholar 

  20. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Arizona State University, Tempe

    Google Scholar 

  21. Muyzer G, Hottenträger S, Teske A, Wawer C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA: a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, Van Elsas JD, De Bruijn F (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 3.4.4/1–23

    Google Scholar 

  22. Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulfide-oxidizing bacteria. Microbiology 142:775–783

    CAS  PubMed  Google Scholar 

  23. Norris PR, Burton NP, Foulis NAM (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76

    Article  CAS  PubMed  Google Scholar 

  24. Pooley FD, Shrestha GN (1996) The distribution and influence of silver in pyrite bacterial leaching systems. Miner Eng 9:825–836

    Article  CAS  Google Scholar 

  25. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  PubMed  Google Scholar 

  26. Robertson WJ, Kinnunen PH-M, Plumb JJ, Franzmann PD, Puhakka JA, Gibson JAE, Nichols PD (2002) Moderately thermophilic ferrous-iron oxidizing bacteria isolated from a pyreitic coal deposit showing spontaneous combustion in South-Western Australia. Miner Eng 15:815–822

    Article  CAS  Google Scholar 

  27. Rodríguez Y, Ballester A, Blázquez ML, González F, Muñoz JA (2003) New information on the chalcopyrite bioleaching mechanism at low and high temperatures. Hydrometallurgy 71:47–56

    Article  Google Scholar 

  28. Romano P, Blázquez ML, Alguacil FJ, Muñoz JA, Ballester A, González F (2001) Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria. FEMS Microbiol Lett 196:71–75

    Article  CAS  PubMed  Google Scholar 

  29. Rossi G (1990) Biohydrometallurgy. McGraw-Hill, Hamburg

    Google Scholar 

  30. Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    CAS  PubMed  Google Scholar 

  31. Stott MB, Watling HR, Franzmann PD, Sutton D (2000) The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Miner Eng 13:1117–1127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Technology Agency (TEKES), Finland, Outokumpu Oyj and the graduate school of Tampere University of Technology. We thank Mr. Andrew Niele and Mrs. Judy Andrina (Freeport Grasberg mine), Mr. Mike Grima (Sandvik Tamrock) and Mr. Danie Roos (Sandvik Tamrock South Africa Ltd) for organizing the samplings and Virpi Salo and Sook Leng Thong for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Päivi H.-M. Kinnunen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinnunen, P.HM., Puhakka, J.A. Characterization of iron- and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indonesian auto-heating copper mine waste heap and a deep South African gold mine. J IND MICROBIOL BIOTECHNOL 31, 409–414 (2004). https://doi.org/10.1007/s10295-004-0160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-004-0160-7

Keywords

Navigation