Skip to main content
Log in

Online monitoring of yeast cultivation using a fuel-cell-type activity sensor

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A microbial fuel-cell type activity sensor integrated into 500 mL and 3.2 L bioreactors was employed for ampero- (μA) and potentiometric (mV) measurements. The aim was to follow the microbial activity during ethanol production by Saccharomyces cerevisiae and to detect the end of carbohydrate consumption. Three different sensor setups were tested to record electrochemical signals produced by the metabolism of glucose and fructose (1:1) online. In a first setup, a reference electrode was used to record the potentiometric values, which rose from 0.26 to 0.5 V in about 10 h during the growth phase. In a second setup, a combination of ampero- and pseudo-potentiometric measurements delivered a maximum voltage of 35 mV. In this arrangement, the pseudo-potentiometric signal changed in a manner that was directly proportional to the amperometric signals, which reached a maximum value of 32 μA. In a third type of arrangement, a reference electrode was added to the anodic bioreactor compartment to carry out ampero- and potentiometric measurements; this is made possible by the high internal resistance of the cultivation. In this case, the reference potential rose to 0.44 V while the current maximum recorded by the working electrodes reached 27 μA. Reference and pseudo-reference electrodes were in all cases K3Fe(CN)6/carbon. Electrodes were made of 9 cm2 woven graphite. To compare the electrochemical signals with established values, the metabolism was also monitored for optical density (at 600 nm) indicating biomass production. For fructose and glucose conversion, HPLC with an Aminex column and RI detector was used, and ethanol production was analyzed by GC with methanol as internal standard. The combination of amperometric and potentiometric recordings was found to be an ideal setup and was successfully used in reproducible cultivations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a–c
Fig. 4
Fig. 5
Fig. 6a–b

Similar content being viewed by others

References

  1. Amerine MA, Thoukis G (1958) The glucose–fructose ratio of California grapes. Vitis 1:224–229

    CAS  Google Scholar 

  2. Barnett JA (2003) A history of research on yeasts 5: the fermentation pathway. Yeast 20:509–543. doi:10.1002/yea.986

    Article  PubMed  CAS  Google Scholar 

  3. Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886. doi:10.1021/cr020719k

    Article  PubMed  CAS  Google Scholar 

  4. Benetto HP, Stirling JL, Tanaka K, Vega CA (1983) Anodic reactions in microbial fuel-cells. Biotechnol Bioeng 25:559–568. doi:10.1002/bit.260250219

    Article  Google Scholar 

  5. Berthels NJ, Cordero Otero RR, Bauer FF, Thevelein JM, Pretorius IS (2004) Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res 4:683–689. doi:10.1016/j.femsyr.2004.02.005

    Article  PubMed  CAS  Google Scholar 

  6. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555. doi:10.1128/AEM.69.3.1548-1555.2003

    Google Scholar 

  7. Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045

    PubMed  CAS  Google Scholar 

  8. He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015. doi:10.1002/elan.200603628

    Article  CAS  Google Scholar 

  9. Heilmann J, Logan BE (2006) Production of electricity from proteins using a microbial fuel cell. Water Environ Res 78:531–537. doi:10.2175/106143005X73046

    Article  PubMed  CAS  Google Scholar 

  10. Holleman-Wiberg (1985) Lehrbuch der anorganischen chemie 91-100. Walter de Gruyter, Berlin, pp 1142–1143

  11. Heller A (2006) Potentially implantable miniature batteries. Anal Bioanal Chem 385:469–473. doi:10.1007/s00216-006-0326-4

    Article  PubMed  CAS  Google Scholar 

  12. Holme DJ, Peck H (1998) Analytical biochemistry, 3rd edn. Prentice Hall, Harlow, pp 169

  13. Holtmann D, Schrader J, Sell D (2006) Quantitative comparison of the signals of an electrochemical bioactivity sensor during the cultivation of different microorganisms. Biotechnol Lett 28:889–896. doi:10.1007/s10529-006-9021-y

    Article  PubMed  CAS  Google Scholar 

  14. Kang KH, Jang JK, Phan TH, Moon H, Chang IS, Kim BH (2003) A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett 25:1357–1361. doi:10.1023/A:1024984521699

    Article  PubMed  CAS  Google Scholar 

  15. Kim FH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545. doi:10.1023/A:1022891231369

    Article  PubMed  CAS  Google Scholar 

  16. Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52:31–37

    PubMed  CAS  Google Scholar 

  17. Miyabayashi A, Danielsson B, Mattiasson B (1987) A dual fuel-cell for flow-through quantification of microorganisms. Ann N Y Acad Sci 501:555–557. doi:10.1111/j.1749-6632.1987.tb45777.x

    Article  Google Scholar 

  18. Niessen J, Schröder U, Harnisch F, Scholz F (2005) Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett Appl Microbiol 41:286–290. doi:10.1111/j.1472-765X.2005.01742.x

    Article  PubMed  CAS  Google Scholar 

  19. Oh SE, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39:4673–4682. doi:10.1016/j.watres.2005.09.019

    Article  PubMed  CAS  Google Scholar 

  20. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082. doi:10.1021/es050986i

    Article  PubMed  CAS  Google Scholar 

  21. Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535. doi:10.1023/A:1025484009367

    Article  PubMed  CAS  Google Scholar 

  22. Ramon-Protugal F, Pingaud H, Strehaiano P (2004) Metabolic transition step from ethanol consumption to sugar/ethanol. Biotechnol Lett 26:1671–1674. doi:10.1007/s10529-004-3520-5

    Article  Google Scholar 

  23. Stickler M, Rhein T (2000) Ullmann’s encyclopedia of industrial chemistry (online edition). Wiley-VCH, Weinheim

  24. Szucs A, Hitchens GD, JO’M Bockris (1989) On the adsorption of glucose-oxidase at a gold electrode. J Electrochem Soc 136:3748–3755. doi:10.1149/1.2096541

    Article  CAS  Google Scholar 

  25. Zhang X-C, Halme A (1995) Modeling of a microbial fuel-cell process. Biotechnol Lett 17:809–814. doi:10.1007/BF00129009

    Article  CAS  Google Scholar 

  26. Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40:5193–5199. doi:10.1021/es060332p

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favre, MF., Carrard, D., Ducommun, R. et al. Online monitoring of yeast cultivation using a fuel-cell-type activity sensor. J Ind Microbiol Biotechnol 36, 1307–1314 (2009). https://doi.org/10.1007/s10295-009-0614-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0614-z

Keywords

Navigation