Skip to main content
Log in

The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A variety of raw materials have been used in fermentation process. This study shows the use of rice straw hemicellulosic hydrolysate, as the only source of nutrient, to produce high added-value products. In the present work, the activity of the enzymes xylose reductase (XR); xylitol dehydrogenase (XD); and glucose-6-phosphate dehydrogenase (G6PD) during cultivation of Candida guilliermondii on rice straw hemicellulosic hydrolysate was measured and correlated with xylitol production under different pH values (around 4.5 and 7.5) and initial xylose concentration (around 30 and 70 g l−1). Independent of the pH value and xylose concentration evaluated, the title of XD remained constant. On the other hand, the volumetric activity of G6PD increased whereas the level of XR decreased when the initial xylose concentration was increased from 30 to 70 g l−1. The highest values of xylitol productivity (Q P ≈ 0.40 g l−1) and yield factor (Y P/S ≈ 0.60 g g−1) were reached at highest G6PD/XR ratio and lowest XR/XD ratio. These results suggest that NADPH concentrations influence the formation of xylitol more than the activity ratios of the enzymes XR and XD. Thus, an optimal rate between G6PD and XR must be reached in order to optimize the xylitol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nobre A, Duarte LC, Roseiro JC, Gírio FM (2002) A physiological and enzymatic study of Debaryomyces hansenii growth on xylose- and oxygen-limited chemostats. Appl Microbiol Biotechnol 59:509–516. doi:10.1007/s00253-002-1050-4

    Article  PubMed  CAS  Google Scholar 

  2. Sánchez S, Bravo V, Moya AJ, Castro E, Camacho F (2004) Influence of temperature on the fermentation of d-xylose by Pachysolen tannophilus to produce ethanol and xylitol. Process Biochem 39:673–679. doi:10.1016/S0032-9592(03)00139-0

    Article  CAS  Google Scholar 

  3. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Diluted-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 17:171–176. doi:10.1016/S0926-6690(02)00095-X

    Article  CAS  Google Scholar 

  4. Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–4. doi:10.1016/S0922-338X(98)80026-3

    Article  CAS  Google Scholar 

  5. Lee H, Sopher CR, Yau KYF (1996) Induction of xylose reductase and xylitol dehydrogenase activities on mixed sugars in Candida guilliermondii. J Chem Technol Biotechnol 66:375–379. doi :10.1002/(SICI)1097-4660(199604)65:4<375::AID-JCTB437>3.0.CO;2-T

    Article  Google Scholar 

  6. Miguel ASM, Neves LCM, Vitolo M, Pessoa A Jr (2003) Effect of flow rate pattern on glucose-6-phosphate dehydrogenase synthesis in fed-batch culture of recombinant Saccharomyces cerevisiae. Biotechnol Prog 19:320–324. doi:10.1021/bp025724o

    Article  PubMed  CAS  Google Scholar 

  7. Gírio FM, Roseiro JC, Sá-Machado P, Duarte-Reis R, Amaral-Collaço MT (1994) Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzyme Microb Technol 16:1074–1078. doi:10.1016/0141-0229(94)90145-7

    Article  Google Scholar 

  8. Granström T, Ojamo H, Leisola M (2001) Chemostat study of xylitol production by Candida guilliermondii. Appl Microbiol Biotechnol 55:36–42. doi:10.1007/s002530000461

    Article  PubMed  Google Scholar 

  9. Barbosa MFS, Medeiros MB, Mancilha IM, Scheneider H, Lee H (1988) Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251. doi:10.1007/BF01569582

    Article  CAS  Google Scholar 

  10. Gurpilhares DB, Pessoa A Jr, Roberto IC (2006) Glucose-6-phosphate dehydrogenase and xylitol production by Candida guilliermondii FTI 20037 using statistical experimental design. Process Biochem 41:631–637. doi:10.1016/j.procbio.2005.08.008

    Article  CAS  Google Scholar 

  11. Gurpilhares DB, Hasmann FA, Pessoa A Jr, Roberto IC (2006) Optimization of glucose-6-phosphate dehydrogenase releasing from Candida guilliermondii by disruption with glass beads. Enzyme Microb Technol 39:591–595. doi:10.1016/j.enzmictec.2005.11.018

    Article  CAS  Google Scholar 

  12. Bergmeyer HU (1984) Methods of enzymatic analysis, vol 2, 3rd edn. Velag Chemie, Weinheim, p 539

    Google Scholar 

  13. Martínez EA, Silva SS, Silva JBA, Solenzal AIN, Felipe MGA (2003) The influence of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolysate by C. guilliermondii. Process Biochem 38:1677–1683. doi:10.1016/S0032-9592(02)00244-3

    Article  CAS  Google Scholar 

  14. Silva CJSM, Roberto IC (1999) Statistical screening method for selection of important variables on xylitol biosynthesis from rice straw hydrolysate by Candida guilliermondii FTI 20037. Biotechnol Tech 11:743–747. doi:10.1023/A:1008964724812

    Article  Google Scholar 

  15. Silva CJSM, Roberto IC (2001) Optimization of xylitol production by Candida guilliermondii FTI 20037 using response surface methodology. Process Biochem 36:1119–1124. doi:10.1016/S0032-9592(01)00153-4

    Article  CAS  Google Scholar 

  16. Prior BA, Kilian SG, Preez JC (1989) Fermentation of d-xylose by yeasts Candida shehatae and Pichia stipitis: prospects and problems. Process Biochem 24:21–32

    CAS  Google Scholar 

  17. Kern M, Nidetzky B, Kulbe KD, Haltrich D (1998) Effect of nitrogen sources on the levels of aldose reductase and xylitol dehydrogenase activities in the xylose-fermenting yeast Candida tenuis. J Ferment Bioeng 85:196–202. doi:10.1016/S0922-338X(97)86767-0

    Article  CAS  Google Scholar 

  18. Lima LHA, Felipe MGA, Vitolo M, Torres FAG (2004) Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii. Appl Microbiol Biotechnol 65:734–738. doi:10.1007/s00253-004-1612-8

    Article  PubMed  CAS  Google Scholar 

  19. Dehghani M, Bulmer M, Gregory ME, Ison AP, Thornhill NF (1996) On-line recognition of CO2 exit gas profile for operational harvesting time of intracellular enzyme products from S. cerevisiae. Bioprocess Eng 16:50–55

    CAS  Google Scholar 

  20. Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux recombinat xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609. doi:10.1128/AEM.68.4.1604-1609.2002

    Article  PubMed  CAS  Google Scholar 

  21. Jeppsson M, Johansson B, Jensen PR, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20:1263–1272. doi:10.1002/yea.1043

    Article  PubMed  CAS  Google Scholar 

  22. Sugai JK, Delgenes JP (1995) Catabolite repression of induction of aldose reductase activity and utilization of mixed hemicellulosic sugars in Candida guilliermondii. Curr Microbiol 31:239–244. doi:10.1007/BF00298381

    Article  PubMed  CAS  Google Scholar 

  23. Richard P, Toivari MH, Pentillä M (1999) Evidence that the geneYLR070c of Saccharomyces cerevisiae encondes a xylitol dehydrogenase. FEBS Lett 457:135–138. doi:10.1016/S0014-5793(99)01016-9

    Article  PubMed  CAS  Google Scholar 

  24. Marko K, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664. doi:10.1016/j.femsyr.2004.01.003

    Article  CAS  Google Scholar 

  25. Granström T, Leisola M (2002) Controlled transient changes reveal differences in metabolite production in two Candida yeasts. Appl Microbiol Biotechnol 58:511–516. doi:10.1007/s00253-001-0921-4

    Article  PubMed  CAS  Google Scholar 

  26. Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3:167–175. doi:10.1016/S1567-1356(02)00186-1

    Article  PubMed  CAS  Google Scholar 

  27. Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67:4249–4255. doi:10.1128/AEM.67.9.4249-4255.2001

    Article  PubMed  CAS  Google Scholar 

  28. Anderlund M, Radström P, Hahn-Hägerdal B (2001) Expression of biofunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Metab Eng 3:226–235. doi:10.1006/mben.2001.0190

    Article  PubMed  CAS  Google Scholar 

  29. Alexander MA, Yang VW, Jeffries TW (1988) Levels of pentose phosphate pathway enzymes from Candida shehatae grown in continuous culture. Appl Microbiol Biotechnol 29:282–288

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial assistance from Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês C. Roberto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurpilhares, D.B., Hasmann, F.A., Pessoa, A. et al. The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. J Ind Microbiol Biotechnol 36, 87–93 (2009). https://doi.org/10.1007/s10295-008-0475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0475-x

Key words

Navigation