Skip to main content
Log in

SpnH from Saccharopolyspora spinosa encodes a rhamnosyl 4′-O-methyltransferase for biosynthesis of the insecticidal macrolide, spinosyn A

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Deoxysugar, 2′, 3′, 4′-tri-O-methylrhamnose is an essential structural component of spinosyn A and D, which are the active ingredients of the commercial insect control agent, Spinosad. The spnH gene, which was previously assigned as a rhamnose O-methyltransferase based on gene sequence homology, was cloned from the wild-type Saccharopolyspora spinosa and from a spinosyn K-producing mutant that was defective in the 4′-O-methylation of 2′, 3′-tri-O-methylrhamnose. DNA sequencing confirmed a mutation resulting in an amino acid substitution of G-165 to A-165 in the rhamnosyl 4′-O-methyltransferase of the mutant strain, and the subsequent sequence analysis showed that the mutation occurred in a highly conserved region of the translated amino acid sequence. Both spnH and the gene defective in 4′-O-methylation activity (spnH165A) were expressed heterologously in E. coli and were then purified to homogeneity using a His-tag affinity column. Substrate bioconversion studies showed that the enzyme encoded by spnH, but not spnH165A, could utilize spinosyn K as a substrate. When the wild-type spnH gene was transformed into the spinosyn K-producing mutant, spinosyn A production was restored. These results establish that the enzyme encoded by the spnH gene in wild-type S. spinosa is a rhamnosyl 4′-O-methyltransferase that is responsible for the final rhamnosyl methylation step in the biosynthesis of spinosyn A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bate N, Cundliffe E (1999) The mycinose-biosynthetic genes of Streptomyces fradiae, producer of tylosin. J Ind Microbiol Biotechnol 23:118–122. doi:10.1038/sj.jim.2900707

    Article  PubMed  CAS  Google Scholar 

  2. Fouces R, Mellado E, Diez B, Barredo JL (1999) The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology 145:855–868

    Article  PubMed  CAS  Google Scholar 

  3. Inouye M, Suzuki H, Takada Y, Muto N, Horinouchi S, Beppu T (1994) A gene encoding mycinamicin III O-methyltransferase from Micromonospora griseorubida. Gene 141:121–124

    Article  PubMed  CAS  Google Scholar 

  4. Aguirrezabalaga I, Olano C, Allende N, Rodriguez L, Brana AF, Mendez C, Salas JA (2000) Identification and expression of genes involved in biosynthesis of L-oleandrose and its intermediate L-olivose in the oleandomycin producer Streptomyces antibioticus. Antimicrob Agents Chemother 44:1266–1275. doi:10.1128/AAC.44.5.1266-1275.2000

    Article  PubMed  CAS  Google Scholar 

  5. Paulus TJ, Tuan JS, Luebke VE, Maine GT, Dewitt JP, Katz L (1990) Mutation and cloning of eryG, the structural gene for erythomycin O-methyltransferase from Saccharopolyspora erythraea, and expression of eryG in Escherichia coli. J Bacteriol 172:2541–2546

    PubMed  CAS  Google Scholar 

  6. Ikeda H, Wang LR, Ohta T, Inokoshi J, Omura S (1998) Cloning of the gene encoding avermectin B 5-O-methyltransferase in avermectin-producing Streptomyces avermitilis. Gene 206:175–180. doi:10.1016/S0378-1119(97)00581-7

    Article  PubMed  CAS  Google Scholar 

  7. Patallo EP, Blanco G, Fischer C, Brana AF, Rohr J, Mendez C, Salas JA (2001) Deoxysugar methylation during biosynthesis of the antitumor polyketide elloramycin by Streptomyces olivaceus. J Biol Chem 276:18765–18774. doi:10.1074/jbc.M101225200

    Article  PubMed  CAS  Google Scholar 

  8. Kirst HA, Michel KH, Martin JW, Creemer LC, Chio EH, Yao RC, Nakatsukasa WM, Boeck LD, Occolowitz JL, Paschal JW, Deeter JB, Jones ND, Thompson GD (1991) A84543-A, Unique fermentation-derived tetracyclic macrolides. Tetrahedron Lett 32:4839–4842

    Article  CAS  Google Scholar 

  9. Sparks TC, Crouse GD, Drust G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Manag Sci 57:896–905. doi:10.1002/ps.358

    Article  PubMed  CAS  Google Scholar 

  10. Waldron C, Matsushima P, Rosteck PRJ, Mbroughton MC, Turner J, Madduri K, Crawford KP, Merlo DJ, Baltz RH (2001) Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem Biol 8:487–499. doi:10.1016/S1074-5521(01)00029-1

    Article  PubMed  CAS  Google Scholar 

  11. Madduri K, Waldron C, Merlo DJ (2001) Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa. J Bacteriol 183:5632–5638. doi:10.1128/JB.183.19.5632-5638.2001

    Article  PubMed  CAS  Google Scholar 

  12. Zhao Z, Hong L, Liu HW (2005) Characterization of protein encoded by spnR from the spinosyn gene cluster of Saccharopolyspora spinosa: mechanistic implications for forosamine biosynthesis. J Am Chem Soc 127:7692–7693

    Article  PubMed  CAS  Google Scholar 

  13. Tietze LF, Brasche Staddler GC, Grube A, Bohnke AN (2006) Multiple palladium-catalyzed reactions for the synthesis of analogues of the highly potent insecticides spinosyn A. Angew Chem Int Ed 45:5015–5018. doi:10.1002/anie.200601003

    Article  CAS  Google Scholar 

  14. Kirst HA, Michel KH, Mynderse JS, Chio EH, Yao RC, Nakatsukasa WM, Boeck LD, Occolowitz LJ, Paschal JW, Deeter JB, Thompson GD (1992) Discovery, isolation, and structure elucidation of a family of structurally unique, fermentation-derived tetracyclic macrolides. In: Maker DR, Fenys JG, Steffens JJ (eds) Synthesis and chemistry of agrochemicals III. Amercian Chemical Society, Washington, DC, pp 214–225

    Google Scholar 

  15. Hahn DR, Balcer JL, Lewer P, Gilbert JR, Graupner P (2002) Pesticidal spinosyn derivatives. WO 02/077005 A1

  16. Ausebel F, Brent R, Kingston R, Moore D, Smith J, Seidman J, Struhl K (1987) Current protocol in molecular biology. Wiley, New York

    Google Scholar 

  17. Burgett SG, Rosteck PRJ (1994) Use of dimethyl sulfoxide to improve fluorescent Taq cycle sequencing. In: Adams M, Fields C, Venter JC (eds) Automated DNA sequencing and analysis. Academic, New York, pp 211–215

    Google Scholar 

  18. Matushima P, Broughton MC, Turner JR, Baltz RH (1994) Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: effect of chromosomal insertion on macrolide A83543 production. Gene 146:39–45. doi:10.1016/0378-1119(94)90831-1

    Article  Google Scholar 

  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  20. Zahn JA, Higgs RE, Hilton MD (2001) Use of direct-infusion electrospray mass spectrometry to guide Empirical development of improved conditions for expression of secondary metabolites from Actinomycetes. Appl Environ Microbiol 67:377–386

    Article  PubMed  CAS  Google Scholar 

  21. Baltz RH (1986) Mutagensis in Streptomyces spp. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology, pp 184–190

  22. Huang KX, Badger M, Haney K, Evans SL (2007) Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens. Protein Expr Purif 53:325–330

    Article  PubMed  CAS  Google Scholar 

  23. Bradshaw RA, Brickey WW, Walker KW (1998) N-terminal processing: the methionine aminopeptidase and N-acetyl transferase families. Trends Biochem Sci 23:263–267. doi:10.1016/S0968-0004(98)01227-4

    Article  PubMed  CAS  Google Scholar 

  24. Strobel RJ Jr, Nakatsukasa WM (1993) Response surface methods for optimizing Saccharopolyspora spinosa, a novel macrolid producer. J Ind Microbiol 11:121–127

    Article  CAS  Google Scholar 

  25. Hahn DR, Gustafson G, Waldron C, Bullard B, Jackson JD, Mitchell J (2006) Butenyl-spinosyns, a natural example of genetic engineering of antibiotic biosynthetic genes. J Ind Microbiol Biotechnol 33:94–104. doi:10.1007/s10295-005-0016-9

    Article  PubMed  CAS  Google Scholar 

  26. Kim BG, Lee HJ, Park Y, Lim Y, Ahn JH (2006) Characterization of an O-methyltransferase from soybean. Plant Physiol Biochem 44:236–241. doi:10.1016/j.plaphy.2006.05.003

    Article  PubMed  CAS  Google Scholar 

  27. Fu H, Miguel AA, Khosla C, Bailey JE (1996) Engineered biosynthesis of novel polyketides: regiospecific methylation of an unnatural substrate by the tcmO O-methyltransferase. Biochemistry 35:6527–6532

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dow AgroSciences for finical support, Christine Donahue for technical assistance and Waldron Clegg for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-xue Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Kx., Zahn, J. & Han, L. SpnH from Saccharopolyspora spinosa encodes a rhamnosyl 4′-O-methyltransferase for biosynthesis of the insecticidal macrolide, spinosyn A. J Ind Microbiol Biotechnol 35, 1669–1676 (2008). https://doi.org/10.1007/s10295-008-0431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0431-9

Keywords

Navigation