Skip to main content
Log in

A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Contamination of Lactobacillus sp. in the fermentation broth of bioethanol production decreases ethanol production efficiency. Although the addition of lactate to the broth can effectively inhibit the growth of Lactobacillus sp., it also greatly reduces the fermentation ability of Saccharomyces cerevisiae. To overcome this conflict, lactate-tolerant yeast strains were screened. Candida glabrata strain NFRI 3164 was found to exhibit both higher levels of lactate tolerance and fermentation ability. Co-cultivation of C. glabrata was performed with Lactobacillus brevis and Lb. fermentum, which were reported as major contaminating bacteria during bioethanol production, in culture medium containing 2% lactate. Under these culture conditions, the growth of Lactobacillus strains was greatly inhibited, but the ethanol production of C. glabrata was not significantly affected. Our data show the possibility of designing an effective fuel ethanol production process that eliminates contamination by Lactobacillus strains through the combined use of lactate addition and C. glabrata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  PubMed  CAS  Google Scholar 

  2. Aquarone E (1960) Penicillin and tetracycline as contamination control agents in alcoholic fermentation of sugar cane molasses. Appl Microbiol 8:263–268

    PubMed  CAS  Google Scholar 

  3. Barnett JA, Payne RW, Yaroww D (2000) Yeasts: characteristics and identification. Cambridge University Press, Cambridge

    Google Scholar 

  4. Bayrock DP, Thomas KC, Ingledew WM (2003) Control of Lactobacillus contaminants in continuous fuel ethanol fermentations by constant or pulsed addition of penicillin G. Appl Microbiol Biotechnol 62:498–502

    Article  PubMed  CAS  Google Scholar 

  5. Chang IS, Kim BH, Shin PK (1997) Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl Environ Microbiol 63:1–6

    PubMed  CAS  Google Scholar 

  6. Dawson L, Boopathy R (2007) Use of post-harvest sugarcane residue for ethanol production. Bioresour Technol 98:1695–1699

    Article  PubMed  CAS  Google Scholar 

  7. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  8. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  PubMed  CAS  Google Scholar 

  9. Gregori C, Schuller C, Roetzer A, Schwarzmuller T, Ammerer G, Kuchler K (2007) The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker’s yeast. Eukaryot Cell 6:1635–1645

    Article  PubMed  CAS  Google Scholar 

  10. Herrero E (2005) Evolutionary relationships between Saccharomyces cerevisiae and other fungal species as determined from genome comparisons. Rev Iberoam Micol 22:217–222

    Article  PubMed  Google Scholar 

  11. Hynes SH, Kjarsgaard DM, Thomas KC, Ingledew WM (1997) Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation. J Ind Microbiol Biotechnol 18:284–291

    Article  PubMed  CAS  Google Scholar 

  12. Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol 88:17–25

    Article  PubMed  CAS  Google Scholar 

  13. Kim S, Dale B (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenerg 29:426–439

    Article  Google Scholar 

  14. Kreger-van Rij NJW, Jack WF (1998) The yeasts: a taxonomic study. Elsevier Science Ltd, Amsterdam

    Google Scholar 

  15. Kuriyama H, Seiko Y, Murakami T, Kobayashi H, Sonoda Y, Silva H (1985) Selection of yeast strains for effective ethanol fermentation. Rep Ferment Res Inst 64:43–50

    Google Scholar 

  16. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  PubMed  CAS  Google Scholar 

  17. Levine AS, Fellers CR (1940) Action of acetic acid on food spoilage microorganisms. J Bacteriol 39:499–515

    PubMed  CAS  Google Scholar 

  18. Maiorella B, Blanch HW, Wilke CR (1983) By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 25:103–131

    Article  PubMed  CAS  Google Scholar 

  19. Makanjuola DB, Tymon A, Springham DG (1992) Some effects of lactic acid bacteria on laboratory-scale yeast fermentations. Enzyme Microb Technol 14:350–357

    Article  CAS  Google Scholar 

  20. Merico A, Sulo P, Piskur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274:976–989

    Article  PubMed  CAS  Google Scholar 

  21. Nakagawa Y, Mizuguchi I (2005) The nucleotide sequence determination of catalases of three medically important yeasts using newly designed degenerated primers. Nihon Ishinkin Gakkai Zasshi/Jpn J Med Mycol 46:35–42

    CAS  Google Scholar 

  22. Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26:171–177

    Article  PubMed  CAS  Google Scholar 

  23. Narendranath NV, Thomas KC, Ingledew WM (2000) Urea hydrogen peroxide reduces the numbers of lactobacilli, nourishes yeast, and leaves no residues in the ethanol fermentation. Appl Environ Microbiol 66:4187–4192

    Article  PubMed  CAS  Google Scholar 

  24. Nikkuni S (1990) Annual report on exploration and introduction of microbial genetic resources. Annu Rep Natl Inst Agrobiol Resour 2:59–71

    Google Scholar 

  25. Nishida O, Kuwazaki S, Suzuki C, Shima J (2004) Superior molasses assimilation, stress tolerance, and trehalose accumulation of baker’s yeast isolated from dried sweet potatoes (hoshi-imo). Biosci Biotechnol Biochem 68:1442–1448

    Article  PubMed  CAS  Google Scholar 

  26. Nishino N, Hattori H, Kishida Y (2007) Alcoholic fermentation and its prevention by Lactobacillus buchneri in whole crop rice silage. Lett Appl Microbiol 44:538–543

    Article  PubMed  CAS  Google Scholar 

  27. Oliva-Neto PD, Yokoya F (1998) Effect of 3,4,4′-trichlorocarbanilide on growth of lactic acid bacteria contaminants in alcoholic fermentation. Bioresour Technol 63:17–21

    Article  CAS  Google Scholar 

  28. Pikur J, Langkjr RB (2004) Yeast genome sequencing: the power of comparative genomics. Mol Microbiol 53:381–389

    Article  CAS  Google Scholar 

  29. Rudolf A, Baudel H, Zacchi G, Hahn-Hagerdal B, Liden G (2008) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99(4):783–790

    Article  PubMed  CAS  Google Scholar 

  30. Schell DJ, Dowe N, Ibsen KN, Riley CJ, Ruth MF, Lumpkin RE (2007) Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresour Technol 98:2942–2948

    Article  PubMed  CAS  Google Scholar 

  31. Schell DJ, Riley CJ, Dowe N, Farmer J, Ibsen KN, Ruth MF, Toon ST, Lumpkin RE (2004) A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresour Technol 91:179–188

    Article  PubMed  CAS  Google Scholar 

  32. Seiko Y, Murakami T, Kuriyama H, Sonoda Y (1985) Selection of yeast strains having tolerance to inhibitive conditions. Rep Ferment Res Inst 63:55–63

    Google Scholar 

  33. Sherman F, Fink G, Lawrence C (eds) (1979) Methods in yeast genetics. Cold Spring Harbor Laboratory, New York

  34. Simpson KL, Pettersson B, Priest FG (2001) Characterization of lactobacilli from Scotch malt whisky distilleries and description of Lactobacillus ferintoshensis sp. nov., a new species isolated from malt whisky fermentations. Microbiology 147:1007–1016

    PubMed  CAS  Google Scholar 

  35. Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408

    Article  PubMed  CAS  Google Scholar 

  36. Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenerg 31:416–425

    Article  Google Scholar 

  37. Thomas KC, Hynes SH, Ingledew WM (2001) Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. J Appl Microbiol 90:819–828

    Article  PubMed  CAS  Google Scholar 

  38. Torney F, Moeller L, Scarpa A, Wang K (2007) Genetic engineering approaches to improve bioethanol production from maize. Curr Opin Biotechnol 18:193–199

    Article  PubMed  CAS  Google Scholar 

  39. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36:895–904

    Article  CAS  Google Scholar 

  40. Visser W, Scheffers WA, Batenburg-van der Vegte WH, van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56:3785–3792

    PubMed  CAS  Google Scholar 

  41. von Blottnitz H, Curran MA (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J Cean Prod 15:607–619

    Article  Google Scholar 

  42. Wheals AE, Basso LC, Alves DM, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487

    Article  PubMed  CAS  Google Scholar 

  43. William RG, Carl AW (1986) Effects of sodium meta bisulfite on diffusion fermentation of fodder beets for fuel ethanol production. Biotechnol Bioeng 30:909–916

    Google Scholar 

Download references

Acknowledgments

This work was supported by the project for the development of biomass utilization technologies for revitalizing rural areas from the Ministry of Agriculture, Forestry, and Fisheries (MAFF) of Japan. We thank S. Mizukami-Murata and Y. Sakayori (National Food Research Institute) for their technical assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, I., Nakamura, T. & Shima, J. A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production. J Ind Microbiol Biotechnol 35, 1117–1122 (2008). https://doi.org/10.1007/s10295-008-0390-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0390-1

Keywords

Navigation