Skip to main content
Log in

Screening of Acetate-Tolerant Yeast and Its Effect on Controlling Bacterial Contamination During Ethanol Production from Sugarcane Molasses

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Growth and ethanol fermentation ability of the acetate-tolerant yeast Saccharomyces cerevisiae KU 002-3 strain were investigated in acetate-addition medium. Under simulated industrial conditions, acetate did not affect on sugar consumption and ethanol production of KU 002-3. Moreover, KU 002-3 strain demonstrated a higher capability for ethanol production than other commercial strains. Co-fermentation was conducted with Lactobacillus fermentum IFRPD 2021, the major contaminating bacteria, during the ethanol production at 0.8% (v/v) acetate (130 mM of the undissociated form of acetate). Under these conditions, growth of L. fermentum IFRPD 2021 was inhibited but the growth and ethanol production ability of S. cerevisiae KU 002-3 strain were not significantly affected. Data indicated the possibility of producing ethanol under high acetate accumulation and reducing Lactobacillus sp. in molasses medium or acetate-containing condition. Producing ethanol under high acetate accumulation and lower the contamination of Lactobacillus sp. in a molasses medium can be useful at industrial scale to produce ethanol with S. cerevisiae KU 002-3 under non-sterilized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alternative Energy Development Plan:(AEDP). 2015. Department of Renewable Energy Development and Energy Efficiency, Ministry of Energy, Bangkok, Thailand. http://www.eppo.go.th/images/POLICY/ENG/AEDP2015ENG.pdf. Accessed 1 Feb 2020.

  • Barnett, J.A., R.W. Payne, and D. Yarrow. 2000. Yeasts: Characteristics and identification. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barth, D., A.R. de Souza Monteiro, M.M. da Costa, I. Virkajarvi, V. Sacon, and A. Wilhelmsom. 2014. DesinFix TM 135 in fermentation process for bioethanol production. Brazilian Journal of Microbiology 45: 323–325.

    PubMed  PubMed Central  Google Scholar 

  • Bayrock, D.P., K.C. Thomas, and W.M. Ingledew. 2003. Control of Lactobacillus contaminants in continuous fuel ethanol fermentations by constant or pulsed addition of penicillin G. Applied Microbiology and Biotechnology 62: 498–502.

    CAS  PubMed  Google Scholar 

  • Beckner, M., M.L. Ivey, and T.G. Phister. 2011. Microbial contamination of fuel ethanol fermentations. Letters in Applied Microbiology 53: 387–394.

    CAS  PubMed  Google Scholar 

  • Bischoff, K.M., S. Liu, T.D. Leathers, R.E. Worthington, and J.O. Rich. 2009. Modeling bacterial contamination of fuel ethanol fermentation. Biotechnology and Bioengineering 103: 117–122.

    CAS  PubMed  Google Scholar 

  • Bonatelli, M.L., M.C. Quecine, M.S. Silva, and C.A. Labate. 2017. Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production. FEMS Microbiology Letters 17: 364.

    Google Scholar 

  • Brexó, R.P., and A.S. Sant’Ana. 2017. Impact and significance of microbial contamination during fermentation for bioethanol production. Renewable and Sustainable Energy Reviews 73: 423–434.

    Google Scholar 

  • Casey, E., M. Sedlak, N.W. Ho, and N.S. Mosier. 2010. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Research 10: 385–393.

    CAS  PubMed  Google Scholar 

  • Chatsurachai, S., N. Watanarojanaporn, S. Phaengthai, M. Sakulsombat, and K. Sriroth. 2020. Genetic variation in genes involved in ethanol production among Saccharomyces cerevisiae strains. Sugar Tech 22: 250–258.

    CAS  Google Scholar 

  • Chotineeranat, S., R. Wansuksri, K. Piyachomkwan, P. Chatakanonda, P. Weerathaworn, and K. Sriroth. 2010. Effect of calcium ions on ethanol production from molasses by Saccharomyces cerevisiae. Sugar Tech 12: 120–124.

    CAS  Google Scholar 

  • Chunhawong, K., T. Chaisan, S. Rungmekarat, and K. Khotavivattana. 2018. Sugar industry and utilization of its by-products in Thailand: An overview. Sugar Tech 20: 111–115.

    Google Scholar 

  • Costa, O.Y., B.M. Souto, D.D. Tupinamba, J.C. Bergmann, C.M. Kyaw, R.H. Kruger, C.C. Barreto, and B.F. Quirino. 2015. Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. Journal of Industrial Microbiology and Biotechnology 42: 73–84.

    CAS  PubMed  Google Scholar 

  • Cunha, J.T., C.E. Costa, L. Ferraz, A. Romani, B. Johansson, I. Sa-Correia, and L. Domingues. 2018. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Applied Microbiology and Biotechnology 102: 4589–4600.

    CAS  PubMed  Google Scholar 

  • da Conceicao, L.E., M.A. Saraiva, R.H. Diniz, J. Oliveira, G.D. Barbosa, F. Alvarez, L.F. Correa, H. Mezadri, M.X. Coutrim, R.J. Afonso, C. Lucas, I.M. Castro, and R.L. Brandao. 2015. Biotechnological potential of yeast isolates from cachaca: the Brazilian spirit. Journal of Industrial Microbiology and Biotechnology 42: 237–246.

    PubMed  Google Scholar 

  • Della-Bianca, B.E., and A.K. Gombert. 2013. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Antonie van Leeuwenhoek 104: 1083–1095.

    CAS  PubMed  Google Scholar 

  • Ding, J., J. Bierma, M.R. Smith, E. Poliner, C. Wolfe, A.N. Hadduck, S. Zara, M. Jirikovic, K. van Zee, M.H. Penner, J. Patton-Vogt, and A.T. Bakalinsky. 2013. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Applied Microbiology and Biotechnology 97: 7405–7416.

    CAS  PubMed  Google Scholar 

  • Fernandes, A.R., N.P. Mira, R.C. Vargas, I. Canelhas, and I. Sa-Correia. 2005. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochemical and Biophysical Research Communications 337: 95–103.

    CAS  PubMed  Google Scholar 

  • Graves, T., N.V. Narendranath, K. Dawson, and R. Power. 2007. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash. Applied Microbiology and Biotechnology 73: 1190–1196.

    CAS  PubMed  Google Scholar 

  • Gray, K.A., L. Zhao, and M. Emptage. 2006. Bioethanol. Current Opinion in Chemical Biology 10: 141–146.

    CAS  PubMed  Google Scholar 

  • Haitani, Y., K. Tanaka, M. Yamamoto, T. Nakamura, A. Ando, J. Ogawa, and J. Shima. 2012. Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis. Journal of Bioscience and Bioengineering 114: 648–651.

    CAS  PubMed  Google Scholar 

  • Hynes, S.H., D.M. Kjarsgaard, K.C. Thomas, and W.M. Ingledew. 1997. Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation. Journal of Industrial Microbiology and Biotechnology 18: 284–291.

    CAS  PubMed  Google Scholar 

  • Ingledew, W.M. 1998. Alcohol production by Saccharomyces cerevisiae: A yeast primer. In The alcohol textbook, 3rd ed, ed. K.A. Jacques, T.P. Lyons, and D.R. Kelsall. Nottingham: Nottingham University Press.

    Google Scholar 

  • Inaba, T., D. Watanabe, Y. Yoshiyama, K. Tanaka, J. Ogawa, H. Takagi, H. Shimoi, and J. Shima. 2013. An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express 3: 74.

    PubMed  PubMed Central  Google Scholar 

  • Katakura, Y., C. Moukamnerd, S. Harashima, and M. Kino-oka. 2011. Strategy for preventing bacterial contamination by adding exogenous ethanol in solid-state semi-continuous bioethanol production. Journal of Bioscience and Bioengineering 111: 343–345.

    CAS  PubMed  Google Scholar 

  • Kitanovic, A., F. Bonowski, F. Heigwer, P. Ruoff, I. Kitanovic, C. Ungewiss, and S. Wolfl. 2012. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5. Frontiers in Oncology 2: 118.

    PubMed  PubMed Central  Google Scholar 

  • Kurtzman, C.P., and C.J. Robnett. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331–371.

    CAS  PubMed  Google Scholar 

  • Ludovico, P., M.J. Sousa, M.T. Silva, C. Leao, and M. Corte-Real. 2001. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147: 2409–2415.

    CAS  PubMed  Google Scholar 

  • Lucena, B.T., B.M. dos Santos, J.L. Moreira, A.P. Moreira, A.C. Nunes, V. Azevedo, A. Miyoshi, F.L. Thompson, and M.A. de Morais Jr. 2010. Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiology 10: 298.

    PubMed  PubMed Central  Google Scholar 

  • Muthaiyan, A., A. Limayem, and S.C. Ricke. 2011. Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Progress in Energy and Combustion Science 37: 351–370.

    CAS  Google Scholar 

  • Narendranath, N.V., K.C. Thomas, and W.M. Ingledew. 2001. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. Journal of Industrial Microbiology and Biotechnology 26: 171–177.

    CAS  PubMed  Google Scholar 

  • Natesuntorn, W., S. Phaengthai, C. Sompugdee, M. Sakulsombat, and K. Sriroth. 2019. Selection of protein-rich Saccharomyces cerevisiae from sugarcane mills in Thailand for feed and food applications. Sugar Tech 21: 348–354.

    CAS  Google Scholar 

  • Nishida, O., S. Kuwazaki, C. Suzuki, and J. Shima. 2004. Superior molasses assimilation, stress tolerance, and trehalose accumulation of baker’s yeast isolated from dried sweet potatoes (hoshi-imo). Bioscience, Biotechnology, and Biochemistry 68: 1442–1448.

    CAS  PubMed  Google Scholar 

  • Nwuche, C.O., Y. Murata, J.E. Nweze, I.A. Ndubuisi, H. Ohmae, M. Saito, and J.C. Ogbonna. 2018. Bioethanol production under multiple stress condition by a new acid and temperature tolerant Saccharomyces cerevisiae strain LC 269108 isolated from rotten fruits. Process Biochemistry 67: 105–112.

    CAS  Google Scholar 

  • OECD/Food and Agriculture Organization of the United Nations. 2015. OECD-FAO Agricultural Outlook 2015. Paris: OECD Publishing. http://www.fao.org/3/i4738e/I4738E.pdf. Accessed 1 Feb 2020.

  • Rasmussen, M.L., J.A. Koziel, J.L. Jane, and A.L. Pometto. 2015. Reducing bacterial contamination in fuel ethanol fermentations by ozone treatment of uncooked corn mash. Journal of Agricultural and Food Chemistry 63: 5239–5248.

    CAS  PubMed  Google Scholar 

  • Rich, J.O., K.M. Bischoff, T.D. Leathers, A.M. Anderson, S. Liu, and C.D. Skory. 2018. Resolving bacterial contamination of fuel ethanol fermentations with beneficial bacteria-An alternative to antibiotic treatment. Bioresource Technology 247: 357–362.

    CAS  PubMed  Google Scholar 

  • Saithong, P., T. Nakamura, and J. Shima. 2009. Prevention of bacterial contamination using acetate-tolerant Schizosaccharomyces pombe during bioethanol production from molasses. Journal of Bioscience and Bioengineering 108: 216–219.

    CAS  PubMed  Google Scholar 

  • Skinner-Nemec, K.A., N.N. Nichols, and T.D. Leathers. 2007. Biofilm formation by bacterial contaminants of fuel ethanol production. Biotechnology Letters 29: 379–383.

    CAS  PubMed  Google Scholar 

  • Skinner, K.A., and T.D. Leathers. 2004. Bacterial contaminants of fuel ethanol production. Journal of Industrial Microbiology and Biotechnology 31: 401–408.

    CAS  PubMed  Google Scholar 

  • Sriroth, K., W. Vanichsriratana, and J. Sunthornvarabhas. 2016. The current status of sugar industry and by-products in Thailand. Sugar Tech 18: 576–582.

    Google Scholar 

  • Sukyai, P., N. Yingkamhaeng, N.T. Lam, V. Tangsatianpan, C. Watcharinrat, G. Vanitjinda, W. Vanichsriratana, and K. Sriroth. 2016. Research and development prospects for sugarcane and sugar industry in Thailand. Sugar Tech 8: 583–587.

    Google Scholar 

  • Tanaka, K., Y. Ishii, J. Ogawa, and J. Shima. 2012. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Applied and Environmental Microbiology 78: 8161–8163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Y.Q., M.Z. An, Y.L. Zhong, M. Shigeru, X.L. Wu, and K. Kida. 2010. Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. Journal of Bioscience and Bioengineering 109: 41–46.

    CAS  PubMed  Google Scholar 

  • Teerayut T. 2015. Spotlight on ethanol industry…opportunities and challenges for Thailand’s agricultural sector. https://www.scbeic.com/en/detail/product/1781. Accessed 1 Feb 2020.

  • Thungkao, S., and P. Pattanachareonsuk. 2015. The occurrence and identification of lactic acid bacteria in molasses-based ethanol production plants in Thailand. In Burapha University International Conference 2015, 10–12 July 2015, Chonburi, Thailand. https://buuconference.buu.ac.th/getdownload.php?name=BUU2015-Proceedings&file=file/BUU2015/proceedings.pdf. Accessed 1 Feb 2020.

  • Watanabe, I., T. Nakamura, and J. Shima. 2008. A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production. Journal of Industrial Microbiology and Biotechnology 35: 1117–1122.

    CAS  PubMed  Google Scholar 

  • Wong, H.C., and Y.L. Chen. 1988. Effects of lactic acid bacteria and organic acids on growth and germination of Bacillus cereus. Applied and Environmental Microbiology 54 (9): 2179–2184.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Kasetsart University Research Development Institute (KURDI). We would like to thank the UNU-Kirin Fellowship Program for their knowledge and assistance with the technical research on yeast suitable for bioethanol production.

Funding

This study was funded by Kasetsart University Research and Development Institute (KURDI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumallika Morakul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saithong, P., Vanichsriratana, W. & Morakul, S. Screening of Acetate-Tolerant Yeast and Its Effect on Controlling Bacterial Contamination During Ethanol Production from Sugarcane Molasses. Sugar Tech 23, 382–394 (2021). https://doi.org/10.1007/s12355-020-00901-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-020-00901-3

Keywords

Navigation