Skip to main content
Log in

Proving the antimicrobial spectrum of an amphoteric surfactant-sol-gel coating: a food-borne pathogen study

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

An antimicrobial coating was evaluated in this work for its antimicrobial efficacy against common food-borne pathogens. Dodecyl-di(aminoethyl)-glycine, an organic disinfectant, was immobilized in a silicon oxide matrix to generate thin films over surfaces by means of the sol–gel process. Tetraethoxysilane was used as the polymeric precursor. No alteration of optical transparency on the covered surfaces was observed. Topographic images obtained with atomic force microscopy showed a homogeneous film with no additional roughness added by the polymer to the surface. The attenuated total reflectance-Fourier transform infrared spectral data showed the presence of dodecyl-di(aminoethyl)-glycine in the silicon oxide network after a normal cleaning procedure. The antimicrobial efficacy test was performed by exposing coated slides to suspensions of common food-borne pathogens: Escherichia coli, Staphyloccocus aureus, E. coli O157:H7, Salmonella typhi, S. cholerasuiss, Listeria innocua and L. monocytogenes. The coating activity was not only bacteriostatic but also bactericidal. The percent reduction of viable microorganism exposure over 24 h to the coated surface ranged between 99.5%, for the more resistant gram-positive bacteria, and over 99.999%, for most gram-negative bacteria. The silicon matrix itself did not account for any reduction of viable microbial, even more an increase was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anonymous (1998) Antibacterial finishes on textile materials: an assessment: test method 100-1993. American Association of Textile Chemists and Colorist, AATCC. AATCC technical manual, USA, pp 143–144

  2. Anonymous (1998) Antibacterial finishes on textile materials: parallel streak method: test method 147-1993. American Association of Textile Chemists and Colorist, AATCC. AATCC technical manual, USA, pp 253–254

  3. Anonymous (2001) Antimicrobial products-test for antimicrobial activity and efficacy: JIS 2801:2000. Japanese Industrial Standard, JAP

  4. Bellantone M, Coleman NJ, Hench LL (2000) Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res A 51(3):484–490

    Article  CAS  Google Scholar 

  5. Block S (1983) Quaternary ammonium compounds in disinfectants and antiseptics. Surface active agents. Lea & Febiger, Philadelphia, pp 263–273

    Google Scholar 

  6. Bottcher H, Jagota C, Trepte J, Kallies KH, Haufe H (1999) Sol–gel composite films with controlled release of biocides. J Control Release 60(1):57–65

    Article  PubMed  CAS  Google Scholar 

  7. Brinker C, Scherer G (1990) Sol–gel science. Academic Press, San Diego

    Google Scholar 

  8. Copello GJ, Teves S, Degrossi J, D’Aquino M, Desimone MF, Diaz LE (2006) Antimicrobial activity on glass materials subject to disinfectant xerogel coating. J Ind Microbiol Biotechnol 33(5):343–348

    Article  PubMed  CAS  Google Scholar 

  9. Cowan MM, Abshire KZ, Houk SL, Evans SM (2003) Antimicrobial efficacy of a silver–zeolite matrix coating on stainless steel. J Microbiol Biotechnol 30(2):102–106

    CAS  Google Scholar 

  10. D’Aquino M, Rezk R (1995) Desinfección: Desinfectantes, Desinfestantes, Limpieza. Características de los agentes químicos desinfectantes.. E.U.DE.B.A, Buenos Aires, pp 67–76

    Google Scholar 

  11. Domagk G (1935) A new class of disinfectants. Dtsch Med Wochenschr 61:829–839

    Article  CAS  Google Scholar 

  12. Etienne O, Gasnier C, Taddei C, Voegel JC, Aunis D, Schaaf P, Metz-Boutigue MH, Bolcato-Bellemin AL, Egles C (2005) Antifungal coating by biofunctionalized polyelectrolyte multilayered films. Biomaterials 26(33):6704–6712

    Article  PubMed  CAS  Google Scholar 

  13. Gardner J, Peel M (1986) Introduction to sterilization and disinfection. Churchill Livingstone, Melbourne

    Google Scholar 

  14. Iler R (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  15. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63

    Article  PubMed  CAS  Google Scholar 

  16. Jeon HJ, Yi SC, Oh SG (2003) Preparation and antibacterial effects of Ag-SiO2 thin films by sol–gel method. Biomaterials 24(27):4921–4928

    Article  PubMed  CAS  Google Scholar 

  17. Kawashita M, Toda S, Kim HM, Kokubo T, Masuda N (2003) Preparation of antibacterial silver-doped silica glass microspheres. J Biomed Mater Res A 66(2):266–274

    Article  PubMed  CAS  Google Scholar 

  18. Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD (2000) Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res A 53(6):621–631

    Article  CAS  Google Scholar 

  19. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5(3):877–882

    Article  PubMed  CAS  Google Scholar 

  20. Liang J, Wu R, Wang JW, Barnes K, Worley SD, Cho U, Lee J, Broughton RM, Huang TS (2007) N-halamine biocidal coatings. J Ind Microbiol Biotechnol 34(2):157–163

    Article  PubMed  CAS  Google Scholar 

  21. Milovic NM, Wang J, Lewis K, Klibanov AM (2005) Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng 90(6):715–722

    Article  PubMed  CAS  Google Scholar 

  22. Murata H, Koepsel RR, Matyjaszewski K, Russell AJ (2007) Permanent, non-leaching antibacterial surface—2: How high density cationic surfaces kill bacterial cells. Biomaterials 28(32):4870–4879

    Article  PubMed  CAS  Google Scholar 

  23. Muroya M (1999) Correlation between the formation of silica skeleton structure and Fourier transform reflection infrared absorption spectroscopy spectra. Colloid Surf A 157:147–155

    Article  CAS  Google Scholar 

  24. Nakagawa T, Soga M (1999) A new method for fabricating water repellent silica films having high heat-resistance using the sol–gel method. J Non-Cryst Solids 260(3):167–174

    Article  CAS  Google Scholar 

  25. Rusin P, Bright K, Gerba C (2003) Rapid reduction of Legionella pneumophila on stainless steel with zeolite coatings containing silver and zinc ions. Lett Appl Microbiol 36(2):69–72

    Article  PubMed  CAS  Google Scholar 

  26. Weast R, Astle M (1981) CRC handbook of chemistry and physics. CRC Press, Florida

    Google Scholar 

  27. Xie X, Li Y, Zhang T, Fang HH (2006) Bacterial survival in evaporating deposited droplets on a Teflon-coated surface. Appl Microbiol Biotechnol 73(3):703–712

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

G.J.C and J.D. are grateful for their doctoral fellowship granted by Universidad de Buenos Aires (UBA). This work was supported with grants from UBA (UBACYT B055 and B817) and Agencia Nacional de Promoción Científica y Técnica (BID 1728/OC-AR PICT 14192 and 32310). M.F.D. and L.E.D. are members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) research council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Díaz.

Additional information

G. J. Copello and S. Teves are equally responsible for this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copello, G.J., Teves, S., Degrossi, J. et al. Proving the antimicrobial spectrum of an amphoteric surfactant-sol-gel coating: a food-borne pathogen study. J Ind Microbiol Biotechnol 35, 1041–1046 (2008). https://doi.org/10.1007/s10295-008-0380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0380-3

Keywords

Navigation