Skip to main content

Advertisement

Log in

Seawater requirement for the production of lipoxazolidinones by marine actinomycete strain NPS8920

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A novel marine actinomycete strain NPS8920 produces a new class of 4-oxazolidinone antibiotics lipoxazolidinone A, B and C. Lipoxazolidinone A possesses good potency (1–2 μg/mL) against drug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). Strain NPS8920 exhibits different morphologies in both agar and submerged cultures. The ability of strain NPS8920 to sporulate on saline-based agar media but not on deionized water-based agar medium supported that strain NPS8920 is a marine actinomycete. While strain NPS8920 does not require seawater for growth, the production of lipoxazolidinones by strain NPS8920 can only be detected in the seawater-based media. The optimal production of lipoxazolidinones was observed in the natural seawater-based medium. Strain NPS8920 produced 10–20% of lipoxazolidinones in the synthetic sea salt Instant Ocean®-based medium and no production in the sodium chloride-based and deionized water-based media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beam JW, Buckley B (2006) Community-acquired methicillin-resistant Staphylococcus aureus: prevalence and risk factors. J Athl Train 41:337–340

    Google Scholar 

  2. Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337

    Article  CAS  Google Scholar 

  3. Bourguet-Kondracki ML, Kornprobst JM (2005) Marine pharmacology: potentialities in the treatment of infectious diseases, osteoporosis and Alzheimer’s disease. Adv Biochem Eng Biotechnol 97:105–131

    CAS  Google Scholar 

  4. Bull AT, Stach JE (2007) Marine actinobacteria: new opportunity for natural product search and discovery. Trends Microbiol 15:491–499

    Article  CAS  Google Scholar 

  5. Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Article  CAS  Google Scholar 

  6. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  CAS  Google Scholar 

  7. Hopwood DA (2007) Therapeutic treasures from the deep. Nat Chem Biol 3:457–458

    Article  CAS  Google Scholar 

  8. Kaplan SL, Hulten KG, Gonzalez BE, Hammerman WA, Lamberth OL, Versalovic J, Mason EO Jr (2005) Three-year surveillance of community-acquired Staphylococcus aureus infections in children. Clin Infect Dis 40:1785–1791

    Article  Google Scholar 

  9. Kwon HC, Kauffman CA, Jensen PR, Fenical W (2006) Marinomycins A–D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J Am Chem Soc 128:1622–1632

    Article  CAS  Google Scholar 

  10. Macherla VR, Liu J, Sunga M, White DJ, Grodberg J, Teisan S, Lam KS, Potts BCM (2007) Lipoxazolidinones A, B, and C: antibacterial 4-Oxazolidinones from a marine actinomycete isolated from a Guam marine sediment. J Nat Prod 70:1454–1457

    Article  CAS  Google Scholar 

  11. McCaskill ML, Mason EO Jr, Kaplan SL, Hammerman W, Lamberth LB, Hultén KG (2007) Increase of the USA300 clone among community-acquired methicillin-susceptible Staphylococcus aureus causing invasive infections. Pediatr Infect Dis J 26:1122–1127

    Article  Google Scholar 

  12. Mlynarczyk G, Grzybowska W, Mlynarczyk A, Tyski S, Kawecki D, Luczak M, Chmura A, Rowiński W (2007) Significant increase in the isolation of glycopeptide-resistant enterococci from patients hospitalized in the transplant surgery ward in 2004–2005. Transplant Proc 39:2883–2885

    Article  CAS  Google Scholar 

  13. Newman DJ, Cragg GM (2006) Natural products from marine invertebrates and microbes as modulators of antitumor targets. Curr Drug Targets 7:279–304

    Article  CAS  Google Scholar 

  14. Pannaraj PS, Hulten KG, Gonzalez BE, Mason EO Jr, Kaplan SL (2006) Infective pyomyositis and myositis in children in the era of community-acquired, methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 43:953–960

    Article  Google Scholar 

  15. Pathom-Aree W, Stach JE, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189

    Article  CAS  Google Scholar 

  16. Rice LB (2006) Antimicrobial resistance in Gram-positive bacteria. Am J Infect Control 34(5 Suppl):S11–S19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin S. Lam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunga, M.J., Teisan, S., Tsueng, G. et al. Seawater requirement for the production of lipoxazolidinones by marine actinomycete strain NPS8920. J Ind Microbiol Biotechnol 35, 761–765 (2008). https://doi.org/10.1007/s10295-008-0344-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0344-7

Keywords

Navigation