Skip to main content

Advertisement

Log in

PVA-alginate immobilized cells for anaerobic ammonium oxidation (anammox) process

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The feasibility of an anaerobic ammonium oxidation (anammox) process combined with a cell-immobilization technique for autotrophic nitrogen removal was investigated. Anammox biomass was cultivated from local activated sludge and achieved significant anammox activity in 6 months. The development of a mature anammox biomass was confirmed by fluorescence in situ hybridization (FISH) analysis and off-line activity measurements. The abundance fraction of the anammox bacteria determined by FISH analysis was estimated by software. The anaerobic ammonia oxidizers occupied almost half of the total cells. Additionally, the anammox biomass was granulated as spherical gel beads of 3–4 mm in diameter by using a cell-immobilization technique. The nitrogen removal activity was proved to be successfully retained in the beads, with about 80% of nitrogenous compounds (NH4 +, NO2 and total nitrogen) removed after 48 h. These results offer a promising technique for the preservation of anammox microorganisms, the protection of them against the unfavorable surroundings, and the prevention of biomass washout towards the implementation of sustainable nitrogen elimination biotechnology. This is the first report on the immobilization of anammox biomass as gel beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahn YH (2006) Sustainable nitrogen elimination biotechnologies: a review. Process Biochem 41:1709–1721

    Article  CAS  Google Scholar 

  2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  3. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  Google Scholar 

  4. Chang CC, Tseng SK (1998) Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate. Biotechnol Tech 12(12):865–868

    Article  CAS  Google Scholar 

  5. Chen KC, Chen SJ, Houng JY (1996) Improvement of gas permeability of denitrifying PVA gel beads. Enzyme Microb Technol 18:502–506

    Article  CAS  Google Scholar 

  6. Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    CAS  Google Scholar 

  7. Hisashi N, Takako H, Kenji T, Masanori W, Ken S (1999) Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads. J Biosci Bioeng 87(2):189–193

    Article  Google Scholar 

  8. Ho CM, Tseng SK, Chang YJ (2002) Simultaneous nitrification and denitrification using an autotrophic membrane-immobilized biofilm reactor. Lett Appl Microbiol 35:481–485

    Article  CAS  Google Scholar 

  9. Hsieh YL, Tseng SK, Chang YJ (2002) Nitrification using polyvinyl alcohol-immobilizes nitrifying biofilm on an O2-enriching membrane. Biotechnol Lett 24:315–319

    Article  CAS  Google Scholar 

  10. Kazuichi I, Yasuhiro D, Tatsuo S, Sachiko Y, Satoshi T (2006) Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor. Appl Microbiol Biotechnol 70:47–52

    Article  Google Scholar 

  11. Kenji F, Joseph DR, Norihara Y, Hayato H (2003) Mass cultivation of anaerobic ammonium-oxidizing sludge using a novel nonwoven biomass carrier. J Chem Eng Japan 36:1163–1169

    Article  Google Scholar 

  12. Lee CM, Lu CJ, Chang MS (1994) Effects of immobilized cells on the biodegradation of chlorinated phenols. Wat Sci Technol 30(9):87–90

    CAS  Google Scholar 

  13. Lu CJ, Lee CM, Huang CZ (1996) Biodegradation of chlorophenols by immobilized pure-culture microorganisms. Wat Sci Technol 34:67–72

    Article  CAS  Google Scholar 

  14. Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Google Scholar 

  15. Schmid MC, Maas B, Dapena A, van de Pas-Schoonen K, van de Vossenberg J, Kartal B, van Niftrik L, Schmidt I, Cirpus I, Kuenen JG, Wagner M, Damsté JSS, Kuypers M, Revsbech NP, Mendez R, Jetten MSM, Strous M (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microbiol 71(4):1677–1684

    Article  CAS  Google Scholar 

  16. Schmid M, Wachtmann UT, Klein M, Strous M, Juretschko S, Jetten MSM, Metzger JW, Schleifer KH, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106

    CAS  Google Scholar 

  17. Schmid M, Walsh K, Webb R, Rijpstra WIC, van de Pas-Schoonen KT, Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S, Damste´ JSS, Harris J, Shaw P, Jetten MSM, Strous M (2003) Candidatus “Scalindua brodae,” sp.: nov., Candidatus “Scalindua wagneri,” sp. nov. two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26:529–538

    Article  CAS  Google Scholar 

  18. Seung HS, Suk SC, Kyungmoon P, Young JY (2005) Novel hybrid immobilization of microorganisms and its applications to biological denitrification. Enzyme Microb Technol 37:567–573

    Article  Google Scholar 

  19. Sliekers AO, Derworth N, Gomez JLC, Strous M, Kuenen JG, Jetten MSM (2002) Completely autotrophic nitrogen removal over nitrite in one single reactor. Wat Res 36:2475–2482

    Article  CAS  Google Scholar 

  20. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganism. Appl Microbiol Biotechnol 50:589–596

    Article  CAS  Google Scholar 

  21. Strous M, Kuenen JG, Jetten MSM (1999) Key physiology of anaerobic ammonia oxidation. Appl Environ Microbiol 65:3248–3250

    CAS  Google Scholar 

  22. Third KA, Paxman J, Schmid M, Strous M, Jetten MSM, Cord-Ruwisch R (2005) Enrichment of anammox from activated sludge and its application in CANON process. Microbol Ecol 49:236–244

    Article  CAS  Google Scholar 

  23. Wang J, Kang J (2005) The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor. Process Biochem 40:1973–1978

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China for financially supporting this research under Contract No. NSC 95-2211-E-002-145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jou Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsia, TH., Feng, YJ., Ho, CM. et al. PVA-alginate immobilized cells for anaerobic ammonium oxidation (anammox) process. J Ind Microbiol Biotechnol 35, 721–727 (2008). https://doi.org/10.1007/s10295-008-0336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0336-7

Keywords

Navigation