Skip to main content
Log in

Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Bacterial cellulose (BC) production by Acetobacter xylinum NUST4.1 was carried out in the shake flask and in a stirred-tank reactor by means of adding sodium alginate (NaAlg) into the medium. When 0.04% (w/v) NaAlg was added in the shake flask, BC production reached 6.0 g/l and the terminal yield of the cellulose was 27% of the total sugar initially added, compared with 3.7 g/l and 24% in the control, respectively. The variation between replicates in all determinations was less than 5%. During the cultivation in the stirred-tank reactor, the addition of NaAlg changed the morphology of cellulose from the irregular clumps and fibrous masses entangled in the internals to discrete masses dispersing into the broth, which indicates that NaAlg hinders formation of large clumps of BC, and enhances cellulose yield. Because the structure of cellulose is changed depending on the culture condition such as additives, structural characteristics of BC produced in the NaAlg-free and NaAlg medium are compared using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD). SEM photographs show some differences in reticulated structures and ribbon width and FT-IR spectra indicate that there is the hydrogen bonding interaction between BC and NaAlg, then X-ray diffraction (XRD) analysis reveals that BC produced with NaAlg-added has a lower crystallinity and a smaller crystalline size. The results show that enhanced yields and modification of cellulose structure occur in the presence of NaAlg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bae S, Sugano Y, Shoda M (2004) Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J Biosci Bioeng 91(1):33–38

    Google Scholar 

  2. Caykara T, Demirci S, Eroğlu MS, Gűven O (2005) Poly (ethylene oxide) and its blends with sodium alginate. Polymer 46:10750–10757

    Article  CAS  Google Scholar 

  3. Chao YP, Mitarai M, Sugano Y, Shoda M (2001) Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor. Biotechnol Prog 17:781–785

    Article  PubMed  CAS  Google Scholar 

  4. Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411

    Article  CAS  Google Scholar 

  5. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352

    PubMed  CAS  Google Scholar 

  6. Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose III. Influence of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5:201–213

    Article  CAS  Google Scholar 

  7. Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Ferment Bioeng 88(2):183–188

    CAS  Google Scholar 

  8. Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279

    Article  CAS  Google Scholar 

  9. Ishida T, Sugano Y, Nakai T, Shoda M (2002) Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Biosci Biotechnol Biochem 66(8):1677–1681

    Article  PubMed  CAS  Google Scholar 

  10. Joseph G, Rowe GE, Margaritis A, Wan W (2003) Effects of polyacrylamide-co-acrylic acid on cellulose production by Acetobacter xylinum. J Chem Technol Biot 78:964–970

    Article  CAS  Google Scholar 

  11. Kouda T, Yano H, Yoshinaga F, Kaminoyama M, Kamiwano M (1996) Characterization of non-Newtonian behavior during mixing of bacterial cellulose in bioreactor. J Ferment Bioeng 82(4):382–386

    Article  Google Scholar 

  12. Kouda T, Naritomi T, Yano H, Yoshinaga F (1997a) Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture. J Ferment Bioeng 84(2):124–127

    Article  CAS  Google Scholar 

  13. Kouda T, Yano H, Yoshinaga F (1997b) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J Ferment Bioeng 83(4):371–376

    Article  CAS  Google Scholar 

  14. Krystynowicz A, Czaja W, Jezierska AW, Miśkiewicz MG, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195

    Article  PubMed  CAS  Google Scholar 

  15. Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442

    Article  PubMed  CAS  Google Scholar 

  16. Naidu BVK, Sairam M, V.S.N.Raju K, Aminabhavi TM (2005) Thermal, viscoelastic, solution and membrane properties of sodium alginate / hydroxyethylcellulose blends. Carbohydr Polymer 61:52–60

    Article  CAS  Google Scholar 

  17. Peng P, Xie HQ, Lu LZ (2006) Surface modification of sphalerite with sodium alginate. Colloids Surf A 274:150–153

    Article  CAS  Google Scholar 

  18. Toti US, Aminabhavi TM (2004) Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water + acetic acid and water + isopropanol mixtures. J Membrane Sci 228:199–208

    Article  CAS  Google Scholar 

  19. Xiong J, Ye J, Liang WZ, Fan PM (2000) Influence of microwave on the ultrastructure of cellulose. J South China Univ Technol (Nat Sci Ed) 28(3):84–89

    Google Scholar 

  20. Yoshinaga F, Tonouchi N, Watanabe K (1997) Research process in production cellulose by aeration and agitation culture and its application as a new industrial material. J Biotech Biochem 61(2):219–224

    Article  CAS  Google Scholar 

  21. Yano YK, Park SH, Hwang JW, Pyun YR (1998) Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J Ferment Bioeng 85(3):312–317

    Article  Google Scholar 

  22. Zhang WJ (1999) Biochemical technology researching on polysaccharide composites 2nd edn. Zhejiang College Press, Zhejiang, pp 10, pp 193–198

  23. Zhang LN, Xi Q, Mo ZS, Jin XG (2003) Current researching methods on polymer physics. Wuhan College Press, Hubei, pp 194–195

    Google Scholar 

Download references

Acknowledgments

The authors are very much grateful to J.S. Li, Prof. J.D. Wang and Prof. X.H. Liu from chemical institute of Nanjing University of Science & Technology for their help in performing SEM, FT-IR and XRD observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L.L., Sun, D.P., Hu, L.Y. et al. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum . J Ind Microbiol Biotechnol 34, 483–489 (2007). https://doi.org/10.1007/s10295-007-0218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0218-4

Keywords

Navigation