Skip to main content
Log in

Growth kinetics and Pho84 phosphate transporter activity of Saccharomyces cerevisiae under phosphate-limited conditions

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The effect of phosphate (P i ) concentration on the growth behavior of Saccharomyces cerevisiae strain CEN.PK113-5D in phosphate-limited batch and chemostat cultures was studied. The range of dilution rates used in the present study was 0.08–0.45 h−1. The batch growth of yeast cells followed Monod relationship, but growth of the cells in phosphate-limited chemostat showed change in growth kinetics with increasing dilution rates. The difference in growth kinetics of the yeast cells in phosphate-limited chemostat for dilution rates below and above approximately 0.2 h−1 has been discussed in terms of the batch growth kinetic data and the change in the metabolic activity of the yeast cells. Immunological detection of a C-terminally myc epitope-tagged Pho84 fusion protein indicated derepressive expression of the Pho84 high-affinity P i transporter in the entire range of dilution rates employed in this study. Phosphate transport activity mediated by Pho84 transporter was highest at very low dilution rates, i.e. 0.08–0.1 h−1, corresponding to conditions in which the amount of synthesized Pho84 was at its maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boer VM, De Winde JH, Pronk JT, Piper MDW (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274

    Article  CAS  Google Scholar 

  2. Bun-ya M, Nishimura M, Harashima S, Oshima Y (1991) The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cel Biol 11:3229–3238

    CAS  Google Scholar 

  3. Button DK, Dunker SS, Morse ML (1973) Continuous culture of Rhodotorula rubra: kinetics of phosphate-arsenate uptake, inhibition, and phosphate-limited growth. J Bacteriol 113:599–611

    CAS  Google Scholar 

  4. Button K (1978) On the theory of control of microbial growth kinetics by limiting nutrient concentrations. Deep Sea Res 25:163–1171

    Google Scholar 

  5. Castrol CD, Koretsky AP, Domach MM (1999) NMR-observed phosphate trafficking and polyphosphate dynamics in wild-type and vph1-1 mutant Saccharomyces cerevisiae in response to stresses. Biotechnol Prog 15:65–73

    Article  CAS  Google Scholar 

  6. Dastigny P (1995) Modeling of the aerobic growth of Saccharomyces cerevisiae on mixtures of glucose and ethanol in continuous culture. J Biotechnol 43:213–220

    Article  Google Scholar 

  7. De Kock SH, Du Preez JC, Kilian SG (2000a) Anomalies in the growth kinetics of Saccharomyces cerevisiae strains in aerobic chemostat cultures. J Ind Microbiol Biotechnol 24:231–236

    Article  Google Scholar 

  8. De Kock SH, Du Preez JC, Kilian SG (2000b) The effect of vitamins and amino acids on glucose uptake in aerobic chemostat cultures of three Saccharomyces cerevisiae strains. Syst Appl Microbiol 23:41–46

    Google Scholar 

  9. De Kock SH, Du Preez JC, Kilian SG (2001) The effect of growth factors on anoxic chemostat cultures of two Saccharomyces cerevisiae strains. Biotechnol Lett 23:957–962

    Article  Google Scholar 

  10. Diderich JA, Schepper M, Van Hoek P, Luttik MAH, Van Dijken JP, Pronk JT, Klaassen P, Boelens HFM, Teixeira de Mattos MJ, Van Dam K, Kruckeberg AL (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359

    Article  CAS  Google Scholar 

  11. Doran PM (1995) Bioprocess engineering principles. Academic, London

    Google Scholar 

  12. Du Preez JC, De Kock SH, Kilian SG, Litthauer D (2000) The relationship between transport kinetics and glucose uptake by Saccharomyces cerevisiae in aerobic chemostat cultures. Antonie van Leeuwenhoek 77:379–3886

    Article  CAS  Google Scholar 

  13. Giots F, Donaton MCV, Thevelein JM (2003) Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 47:1163–1181

    Article  CAS  Google Scholar 

  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  15. Lagerstedt JO, Zvyagilskaya R, Pratt JR, Pattison-Granberg J, Kruckeberg AL, Berden JA, Persson BL (2002) Mutagenic and functional analysis of the C-terminus of Saccharomyces cerevisiae Pho84 phosphate transporter. FEBS Lett 526:31–37

    Article  CAS  Google Scholar 

  16. Lange HC, Heijnen JJ (2001) Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol Bioeng 75:334–344

    Article  CAS  Google Scholar 

  17. Larsson C, Von Stockar U, Marison I, Gustafsson L (1993) Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions. J Bacteriol 175:4809–4816

    CAS  Google Scholar 

  18. Martinez P, Persson BL (1998) Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet 258:628–638

    Article  CAS  Google Scholar 

  19. Martinez P, Zvyagilskaya R, Allard P, Persson BL (1998) Physiological regulation of the derepressible phosphate transport in Saccharomyces cerevisiae. J Bacteriol 180:2253–2256

    CAS  Google Scholar 

  20. Meijer MMC, Boonstra J, Verkleij AJ, Verrips CT (1996) Kinetic analysis of hexose uptake in Saccharomyces cerevisiae cultivated in continuous culture. Biochim Biophys Acta 1277:209–216

    Article  CAS  Google Scholar 

  21. Nielsen J, Villadsen J (1992) Modeling of microbial kinetics. Chem Eng Sci 47:4225–4270

    Article  CAS  Google Scholar 

  22. Nyholm NA (1976) A mathematical model for microbial growth under limitation by conservative substrates. Biotechnol Bioeng 18:1043–1056

    Article  CAS  Google Scholar 

  23. Oshima Y (1997) The phosphatase system in Saccharomyces cerevisiae. Genes Genet Syst 72:323–334

    Article  CAS  Google Scholar 

  24. Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, Francois J (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15:191–203

    Article  CAS  Google Scholar 

  25. Pattison-Granberg J, Persson BL (2000) Regulation of cation coupled high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae. J Bacteriol 182:5017–5019

    Article  CAS  Google Scholar 

  26. Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F (2003) Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 43:225–244

    Article  CAS  Google Scholar 

  27. Petersson J, Pattison J, Kruckeberg AL, Berden JA, Persson BL (1999) Intracellular localization of an active green fluorescent protein-tagged Pho84 phosphate permease in Saccharomyces cerevisiae. FEBS Lett 462:37–42

    Article  CAS  Google Scholar 

  28. Pirt SJ (1975) Principles of microbe and cell cultivation. Wiley, New York

    Google Scholar 

  29. Postma EW, Scheffers A, Van Dijken JP (1989) Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066. Yeast 5:159–165

    Article  CAS  Google Scholar 

  30. Postma E, Van den Broek PJA (1990) Continuous-culture study of the regulation of glucose and fructose transport in Kluyveromyces marxianus CBS 6556, J. Bactreriol. 172:2871–2876

    CAS  Google Scholar 

  31. Robertson BR, Button DK (1979) Phosphate-limited continuous culture of Rhodotorula rubra: kinetics of transport, leakage, and growth. J Bacteriol 138:884–895

    CAS  Google Scholar 

  32. Toda K, Yabe I (1979) Mathematical model of cell growth and phosphatase biosynthesis in Saccharomyces carlsbergensis under phosphate limitation. Biotechnol Bioeng 21:487–502

    Article  CAS  Google Scholar 

  33. Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    Article  CAS  Google Scholar 

  34. Volland C, Urban-Grimal D, Geraud G, Haguenauer-Tsapis R (1994) Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem 269:9833–9841

    CAS  Google Scholar 

  35. Walker GM, Maynard AI (1996) Magnesium limited growth of Saccharomyces cerevisiae. Enz Microb Technol 18:455–459

    Article  CAS  Google Scholar 

  36. Walker GM (1998) Yeast physiology and biotechnology. Wiley, New York

    Google Scholar 

  37. Weusthuis RA, Pronk JT, Van den Broek PJA, Van Dijken JP (1994) Chemostat cultivation as a tool for studies on sugar transport in yeasts. Microbiol Rev 58:616–630

    CAS  Google Scholar 

  38. Wykoff DD, O’Shea EK (2001) Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics 159:1491–1499

    CAS  Google Scholar 

  39. Zvyagilskaya R, Parchomenko O, Abramova N, Allard P, Panaretakis T, Pattison-Granberg J, Persson BL (2001) Proton- and sodium-coupled phosphate transport systems and energy status of Yarrowia lipolytica cells grown in acidic and alkaline conditions. J Memb Biol 183:39–50

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Prof. Bengt L. Persson (Kalmar and Stockholm Universities, Sweden) for acting as a co-advisor for the first author in her PhD program and for providing laboratory facilities and yeast strain. We are deeply grateful for the valuable assistance of Dr. Jens O. Lagerstedt (University of California-Davis, USA) in the western blot analyses. The authors are grateful for financial support from The Ministry of Science, Research and Technology of Iran, the KK Foundation, Human Frontier Science Organization, the Swedish Natural Science Research Council, and Växjö University, Sweden. Technical assistance of Helena Rupar is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Shokrollahzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shokrollahzadeh, S., Bonakdarpour, B., Vahabzadeh, F. et al. Growth kinetics and Pho84 phosphate transporter activity of Saccharomyces cerevisiae under phosphate-limited conditions. J Ind Microbiol Biotechnol 34, 17–25 (2007). https://doi.org/10.1007/s10295-006-0157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0157-5

Keywords

Navigation