Skip to main content
Log in

Mechanisms for incorporation of glycerol-derived precursors into polyketide metabolites

  • Original Paper - JMBM
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Several polyketide secondary metabolites are shown by feeding experiments to incorporate glycerol-derived 3-carbon starter units, 2-carbon extender units, or 3-carbon branches into their hydrocarbon chains. In recent years, genetic studies have begun to elucidate the mechanisms by which this occurs. In this article we review the incorporation of glycerol-derived precursors into polyketides and propose new mechanisms for the incorporation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Fig. 4
Scheme 4
Fig. 5
Scheme 5
Fig. 6
Scheme 6
Fig. 7
Scheme 7
Fig. 8
Scheme 8
Scheme 9
Scheme 10

Similar content being viewed by others

References

  1. Allen IW, Ritchie DA (1994) Cloning and analysis of DNA sequences from Streptomyces hygroscopicus encoding geldanamycin biosynthesis. Mol Gen Genet 243:593–599

    Article  PubMed  CAS  Google Scholar 

  2. Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Barrell BG, McCormick JR, Santamaria RI, Losick R, Yamasaki M, Kinashi H, Chen CW, Chandra G, Jakimowicz D, Kieser HM, Kieser T, Chater KF (2004) SCP1, a 356 023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51:1615–1628

    Article  PubMed  CAS  Google Scholar 

  3. Bloomer JL, Kappler FE, Pandey GN (1972) Biosynthesis of carolic acid in Penicillium charlesii: the intermediate precursors. J Chem Soc Chem Commun 4:234–243

    Google Scholar 

  4. Byrne KM, Shafiee A, Nielsen JB, Arison BH, Monaghan RL, Kaplan L (1993) The biosynthesis and enzymology of an immunosupressant, immunomycin, produced by Streptomyces hygroscopicus var. ascomyceticus. In: Hamill R (ed) Developments in industrial microbiology series, vol 32. Wm. C. Brown Publisher, Dubuque, Iowa, pp 29–45

  5. Carroll BJ, Moss SJ, Bai L, Kato Y, Toelzer S, Yu T-W, Floss HG (2002) Identification of a set of genes involved in the formation of the substrate for the incorporation of the unusual “glycolate” chain extension unit in ansamitocin biosynthesis. J Am Chem Soc 124:4176–4177

    Article  PubMed  CAS  Google Scholar 

  6. Challis GL, Chater KF (2001) Incorporation of [U–13C]glycerol defines plausible early steps for the biosynthesis of methylenomycin A in Streptomyces coelicolor A3(2). Chem Comm 10:935–936

    Article  Google Scholar 

  7. Chen TSS, Chang CJ, Floss HG (1979) Biosynthesis of the boron-containing macrolide antibiotic asplasmomycin. J Am Chem Soc 101:5826–5827

    Article  CAS  Google Scholar 

  8. Chen TSS, Chang CJ, Floss HG (1981) On the biosynthesis of boromycin. J Org Chem 46:2661–2665

    Article  CAS  Google Scholar 

  9. Chen TSS, Chang CJ, Floss HG (1981) Biosynthesis of the boron-containing macrolide antibiotic aplasmomycin by Streptomyces griseus . J Am Chem Soc 103:4565–4568

    Article  CAS  Google Scholar 

  10. Chijiwa S, Park H-R, Furihata K, Ogata M, Endo T, Kuzuyama T, Hayakawa Y, Shin-ya K (2003) Biosynthetic studies of versipelostatin, a novel 17-membered α-tetronic acid involved macrocyclic compound isolated from Streptomyces versipellis. Tetrahedron Lett 44:5897–5900

    Article  CAS  Google Scholar 

  11. Corre C, Challis GL (2005) Evidence for the unusual condensation of a diketide with a pentose in the methylenomycin biosynthetic pathway of Streptomyces coelicolor A3(2). Chembiochem (in press)

  12. Cronin A, Mowbray S, Dürk H, Homburg S, Fleming I, Fisslthaler B, Oesch F, Arand M (2003) The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc Natl Acad Sci USA 100:1552–1557

    Article  PubMed  CAS  Google Scholar 

  13. Dunitz JD, Hawley DM, Miklos D, White DN, Berlin Y, Marusic R, Prelog V (1971) Structure of boromycin. Helv Chim Acta 54:1709–1713

    Article  PubMed  CAS  Google Scholar 

  14. Emmert EAB, Klimowicz AK, Thomas MG, Handelsman J (2004) Genetics of zwittermicin A production by Bacillus cereus. Appl Environ Microbiol 70:104–113

    Article  PubMed  CAS  Google Scholar 

  15. Haber A, Johnson RD, Rinehart KL Jr (1977) Biosynthetic origin of the C2 units of geldanamycin and distribution of label from D-[6−13C]glucose. J Am Chem Soc 99:3541–3544

    Article  PubMed  CAS  Google Scholar 

  16. Haneishi T, Kitahara N, Takiguchi Y, Arai M, Sugawara S (1974a) New antibiotics, methylenomycins A and B. I. Producing organism, fermentation and isolation, biological activities and physical and chemical properties. J Antibiot 27:386–392

    PubMed  CAS  Google Scholar 

  17. Haneishi T, Terahara A, Arai M, Hata T, Tamura C (1974b) New antibiotics, methylenomycins A and B. II. Structures of methylenomycins A and B. J Antibiot 27:393–399

    PubMed  CAS  Google Scholar 

  18. Hatano K, Mizuta E, Akiyama S, Higashide E, Nakao Y (1985) Biosynthetic origin of the ansa-structure of ansamitocin P-3. Agric Biol Chem 49:327–333

    CAS  Google Scholar 

  19. Hildebrand M, Waggoner LE, Liu H, Sudek S, Allen S, Anderson C, Sherman DH, Haygood M (2004) bryA: an unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina. Chem Biol 11:1543–1552

    Article  PubMed  CAS  Google Scholar 

  20. Hill AM, Harris JP, Siskos AP (1998) Investigation of glycerol incorporation into soraphen A. Chem Commun 2361–2362

  21. Hill RA, Parker MC (2001) Hot off the press. Nat Prod Rep 18:3–5

    Google Scholar 

  22. Hoffmann L, Grond S (2004) Mixed acetate-glycerol biosynthesis and formation of benzoate directly from shikimate in Streptomyces sp. Eur J Org Chem 4771–4777

  23. Holzbach R, Pape H, Hook D, Kreutzer EF, Chang CJ, Floss HG (1978) Biosynthesis of the macrolide antibiotic chlorothricin: basic building blocks. Biochemistry 17:556–560

    Article  PubMed  CAS  Google Scholar 

  24. Hornemann U, Hopwood DA (1981) Biosynthesis of methylenomycin A: a plasmid-determined antibiotic. In: Corcoran JW (ed) Antibiotics, vol IV. Springer, Berlin Heidelberg New York, pp 123–131

  25. Kakavas SJ, Katz L, Stassi D (1997) Identification and characterization of the niddamycin polyketide synthase genes from Streptomyces caelestis. J Bacteriol 179:7515–7522

    PubMed  CAS  Google Scholar 

  26. Kato Y, Bai L, Xue Q, Revill WP, Yu T-W, Floss HG (2002) Functional expression of genes involved in the biosynthesis of the novel polyketide chain extension unit, methoxymalonyl-acyl carrier protein, and engineered biosynthesis of 2-desmethyl-2-methoxy-6-deoxyerythronolide B. J Am Chem Soc 124:5268–5269

    Article  PubMed  CAS  Google Scholar 

  27. Kerr RG, Lawry J, Gush KA (1996) In vitro biosynthetic studies of the bryostatins, anti-cancer agents from the marine bryozoan Bugula neritina. Tetrahedron Lett 37:8305–8308

    Article  CAS  Google Scholar 

  28. Kuhstoss S, Huber M, Turner JR, Paschal JW, Rao RN (1996) Production of a novel polyketide through the construction of a hybrid polyketide synthase. Gene 183:231–236

    Article  PubMed  CAS  Google Scholar 

  29. Lee JJ, Derwick PM, Gorst-Allman CP, Spreafico F, Kowal C, Chang CJ, McInnes AG, Walter JA, Keller PJ, Floss HG (1987) Further studies on the biosynthesis of the boron-containing antibiotic aplasmomycin. J Am Chem Soc 109:5426–5432

    Article  CAS  Google Scholar 

  30. Lee JJ, Lee JP, Keller PJ, Cottrell CE, Chang CJ, Zaehner H, Floss HG (1986) Further studies on the biosynthesis of chlorothricin. J Antibiot 39:1123–1134

    PubMed  CAS  Google Scholar 

  31. Ligon J, Hill S, Beck J, Zirkle R, Molnar I, Zawodny J, Money S, Schupp T (2002) Characterization of the biosynthetic gene cluster for the antifungal polyketide soraphen A from Sorangium cellulosum So ce26. Gene 285:257–267

    Article  PubMed  CAS  Google Scholar 

  32. Omura S, Nakagawa A, Takeshima H, Atusmi K, Miyazawa J, Piriou F, Lukacs G (1975) Biosynthetic studies using carbon-13 enriched precursors on the 16-membered macrolide antibiotic leucomycin A3. J Am Chem Soc 97:6600–6602

    Article  PubMed  CAS  Google Scholar 

  33. Mascaretti OA, Chang CJ, Hook D, Otsuka H, Kreutzer EF, Floss HG (1981) Biosynthesis of the macrolide antibiotic chlorothricin. Biochemistry 20:919–924

    Article  PubMed  CAS  Google Scholar 

  34. Mashimo Y, Sekiyama Y, Araya H, Fujimoto Y, (2004) Biosynthesis of agglomerin A: stereospecific incorporation of pro-R- and pro-S-hydrogens at sn-C-3 of glycerol into the branched C3 moiety. Bioorg Med Chem Lett 14:649–651

    Article  PubMed  CAS  Google Scholar 

  35. Midland SL, Keen NT, Sims JJ, Midland MM, Stayton MM, Burton V, Smith MJ, Mazzola EP, Graham KJ, Clardy J (1993) The structures of syringolides 1 and 2, novel C-glycosidic elicitors from Pseudomonas syringae pv. Tomato. J Org Chem 58:2940–2945

    Article  CAS  Google Scholar 

  36. Moore BS (1999) Biosynthesis of marine natural products: microorganisms and macroalgae. Nat Prod Rep 16:653–674

    Article  PubMed  CAS  Google Scholar 

  37. Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19:70–99

    Article  PubMed  CAS  Google Scholar 

  38. Motamedi H, Shafiee A (1998) The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur J Biochem 256:528–534

    Article  PubMed  CAS  Google Scholar 

  39. Newman JW, Morisseau C, Harris TR, Hammock BD (2003) The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci USA 100:1558–1563

    Article  PubMed  CAS  Google Scholar 

  40. Omura S, Tsuzuki K, Nakagawa A, Lukacs G (1983) Biosynthetic origin of carbon-3 and carbon-4 of leucomycin aglycone. J Antibiot 36:611–613

    PubMed  CAS  Google Scholar 

  41. Ono M, Sakuda S, Ikeda H, Furihata K, Nakayama J, Suzuki A, Isogai A (1998) Structures and biosynthesis of aflastatins: novel inhibitors of aflatoxin production by Aspergillus parasiticus. J Antibiot 51:1019–1028

    PubMed  CAS  Google Scholar 

  42. Patel K, Piagentini M, Rascher A, Tian Z-Q, Buchanan GO, Regentin R, Hu Z, Hutchinson CR, McDaniel R (2004) Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chem Biol 11:1625–1633

    Article  PubMed  CAS  Google Scholar 

  43. Pettit GR, Herald CL, Doubek DL, Herald DL, Arnold E, Clardy J (1982) Isolation and structure of bryostatin 1. J Am Chem Soc 104:6846–6848

    Article  CAS  Google Scholar 

  44. Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007

    Article  PubMed  CAS  Google Scholar 

  45. Rascher A, Hu Z, Viswanathan N, Schirmer A, Reid R, Nierman WC et al (2003) Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Lett 218:223–230

    Article  PubMed  CAS  Google Scholar 

  46. Rawlings BJ (1997) Biosynthesis of polyketides. Nat Prod Rep 14:523–556

    Article  PubMed  CAS  Google Scholar 

  47. Ridder IS, Dijkstra BW (1999) Identification of the Mg2+-binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY. Biochem J 339:223–226

    Article  PubMed  CAS  Google Scholar 

  48. Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  49. Sakuda S, Ono M, Ikeda H, Inagaki Y, Nakayama J, Suzuki A, Isogai A (1997) Structure of blasticidin A. Tetrahedron Lett 38:7399–7402

    Article  CAS  Google Scholar 

  50. Sakuda S, Higashi A, Tanaka S, Nihira T, Yamada Y (1992) Biosynthesis of virginiae butanolide A, a butyrolactone autoregulator from Streptomyces. J Am Chem Soc 114:663–668

    Article  CAS  Google Scholar 

  51. Schuhmann T, Grond S (2004) Biosynthetic investigations of the V-type ATPase inhibitors bafilomycin A1, B1 and concanamycin A. J Antibiot 57:655–661

    PubMed  CAS  Google Scholar 

  52. Schummer D, Schomburg D, Irschik H, Reichenbach H, Höfle G (1996) Antibiotics from gliding bacteria. Part LXXV. Absolute configuration and biosynthesis of tartrolon B, a boron-containing macrolide from Sorangium cellulosum. Liebigs Ann 6:965–969

    Google Scholar 

  53. Schupp T, Toupet C, Cluzel B, Neff S, Hill S, Beck JJ, Ligon JM (1995) A Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J Bacteriol 177:3673–3679

    PubMed  CAS  Google Scholar 

  54. Sekiyama Y, Araya H, Hasumi K, Endo A, Fujimoto Y (1998) Biosynthesis of acaterin: incorporation of glycerol into the C3 branched unit. Tetrahedron Lett 39:6233–6236

    Article  CAS  Google Scholar 

  55. Sekiyama Y, Hasumi K, Endo A, Fujimoto Y (1999) Biosynthesis of acaterin: metabolic fate of sn-3 hydrogens of glycerol during the formation of 4-dehydroacaterin. Tetrahedron Lett 40:4223–4226

    Article  CAS  Google Scholar 

  56. Sekiyama Y, Fujimoto Y, Hasumi K, Endo A, (2001) Biosynthesis of acaterin: coupling of C5 unit with octanoate. J Org Chem 66:5649–5654

    Article  PubMed  CAS  Google Scholar 

  57. Stohl EA, Milner JL, Handelsman J (1999) Zwittermicin A biosynthetic cluster. Gene 237:403–411

    Article  PubMed  CAS  Google Scholar 

  58. Suga T, Hirata T (1982) The biosynthesis of protoanemonin in Ranunculus glaber. The pivotal biosynthetic intermediate and the stereospecific hydrogen elimination from the intermediate. Bull Chem Soc Jpn 55:1584–1587

    Article  CAS  Google Scholar 

  59. Uramoto M, Otake N, Cary L, Tanabe M (1978) Biosynthetic studies with carbon-13. Lankacidin group of antibiotics. J Am Chem Soc 100:3616–3617

    Article  CAS  Google Scholar 

  60. Watanabe K, Khosla C, Stroud RM, Tsai S-C (2003) Crystal structure of an acyl-ACP dehydrogenase from the FK520 polyketide biosynthetic pathway: insights into extender unit biosynthesis. J Mol Biol 334:435–444

    Article  PubMed  CAS  Google Scholar 

  61. Wu K, Chung L, Revill WP, Katz L, Reeves CD (2000) The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene 251:81–90

    Article  PubMed  CAS  Google Scholar 

  62. Yamada Y (1999) In: England R, Hobbs G, Bainton N, Roberts D (eds) Microbial signalling and communication. Cambridge University Press, Cambridge, pp 177–196

  63. Yu T-W, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci USA 99:7968–7973

    Article  PubMed  CAS  Google Scholar 

  64. Yucel I, Midland SL, Sims JJ, Keen NT (1994) Class I and Class II avrD alleles direct the production of different products in gram-negative bacteria. Mol Plant Microbe Interact 7:148–150

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the corresponding author’s lab is supported by the UK BBSRC and the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Challis.

Additional information

Laura J. Walton, Christophe Corre contributed equally to this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walton, L.J., Corre, C. & Challis, G.L. Mechanisms for incorporation of glycerol-derived precursors into polyketide metabolites. J IND MICROBIOL BIOTECHNOL 33, 105–120 (2006). https://doi.org/10.1007/s10295-005-0026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0026-7

Keywords

Navigation