Skip to main content

The Assembly Line Enzymology of Polyketide Biosynthesis

  • Protocol
  • First Online:
Nonribosomal Peptide and Polyketide Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1401))

Abstract

Polyketides are a structurally and functionally diverse family of bioactive natural products that have found widespread application as pharmaceuticals, agrochemicals, and veterinary medicines. In bacteria complex polyketides are biosynthesized by giant multifunctional megaenzymes, termed modular polyketide synthases (PKSs), which construct their products in a highly coordinated assembly line-like fashion from a pool of simple precursor substrates. Not only is the multifaceted enzymology of PKSs a fascinating target for study, but it also presents considerable opportunities for the reengineering of these systems affording access to functionally optimized unnatural natural products. Here we provide an introductory primer to modular polyketide synthase structure and function, and highlight recent advances in the characterization and exploitation of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  PubMed  CAS  Google Scholar 

  2. Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–166

    Article  PubMed  CAS  Google Scholar 

  3. Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4:687–699

    Article  PubMed Central  PubMed  Google Scholar 

  4. Washington JA, Wilson WR (1985) Erythromycin: a microbial and clinical perspective after 30 years of clinical use (1). Mayo Clin Proc 60:189–203

    Article  PubMed  CAS  Google Scholar 

  5. Campbell WC (2012) History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Curr Pharm Biotechnol 13:9–11

    Article  Google Scholar 

  6. Weissman KJ (2009) Introduction to polyketide biosynthesis. Methods Enzymol 459:3–16

    Article  PubMed  CAS  Google Scholar 

  7. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100(Suppl 2):14555–14561

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Firn RD, Jones CG (2003) Natural products - a simple model to explain chemical diversity. Nat Prod Rep 20:382

    Article  PubMed  CAS  Google Scholar 

  9. Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 199:1805–1811

    Article  CAS  Google Scholar 

  10. Walsh CT (2008) The chemical versatility of natural-product assembly lines. Acc Chem Res 41:4–10

    Article  PubMed  CAS  Google Scholar 

  11. Williams G (2013) Engineering polyketide synthases and nonribosomal peptide synthetases. Curr Opin Struct Biol 23:603–612

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Wong FT, Khosla C (2012) Combinatorial biosynthesis of polyketides - a perspective. Curr Opin Chem Biol 16:117–123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Hertweck C (2015) Decoding and reprogramming complex polyketide assembly lines: prospects for synthetic biology. Trends Biochem Sci 40:189–199

    Article  PubMed  CAS  Google Scholar 

  14. Cummings M, Breitling R, Takano E (2014) Steps towards the synthetic biology of polyketide biosynthesis. FEMS Microbiol Lett 351:116–125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Goss RJM, Shankar S, Fayad AA (2012) The generation of “unnatural” products: synthetic biology meets synthetic chemistry. Nat Prod Rep 29:870–889

    Article  PubMed  CAS  Google Scholar 

  16. Weissman KJ (2004) Polyketide biosynthesis: understanding and exploiting modularity. Philos Trans A Math Phys Eng Sci 362:2671–2690

    Article  PubMed  CAS  Google Scholar 

  17. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  PubMed  CAS  Google Scholar 

  18. Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716

    Article  PubMed  CAS  Google Scholar 

  19. Xue Y, Sherman DH (2000) Alternative modular polyketide synthase expression controls macrolactone structure. Nature 403:571–575

    Article  PubMed  CAS  Google Scholar 

  20. Wilkinson B et al (2000) Novel octaketide macrolides related to 6-deoxyerythronolide B provide evidence for iterative operation of the erythromycin polyketide synthase. Chem Biol 7:111–117

    Article  PubMed  CAS  Google Scholar 

  21. Donadio S, Staver MJ, Mcalpine JB et al (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252:675–679

    Article  PubMed  CAS  Google Scholar 

  22. Callahan B, Thattai M, Shraiman BI (2009) Emergent gene order in a model of modular polyketide synthases. Proc Natl Acad Sci U S A 106:19410–19415

    Article  PubMed Central  PubMed  Google Scholar 

  23. Fedorov O, Niesen FH (2012) Kinase inhibitor selectivity profiling using differential scanning fluorimetry. Methods Mol Biol 795:109–118

    Article  PubMed  CAS  Google Scholar 

  24. Helfrich EJN, Reiter S, Piel J (2014) Recent advances in genome-based polyketide discovery. Curr Opin Biotechnol 29:107–115

    Article  PubMed  CAS  Google Scholar 

  25. Horsman ME, Hari TPA, Boddy CN (2015) Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate? Nat Prod Rep (in Press)

    Google Scholar 

  26. Lin S, Huang T, Shen B (2012) Tailoring enzymes acting on carrier protein-tethered substrates in natural product biosynthesis. Methods Enzymol 516:321–343

    Article  PubMed  CAS  Google Scholar 

  27. Maier T, Leibundgut M, Ban N (2008) The crystal structure of a mammalian fatty acid synthase. Science 321:1315–1323

    Article  PubMed  CAS  Google Scholar 

  28. Townsend CA (2014) Aflatoxin and deconstruction of type I, iterative polyketide synthase function. Nat Prod Rep 31:1260–1265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Vederas JC (2014) Explorations of fungal biosynthesis of reduced polyketides - a personal viewpoint. Nat Prod Rep 31:1253–1259

    Article  PubMed  CAS  Google Scholar 

  30. Simpson TJ (2014) Fungal polyketide biosynthesis - a personal perspective. Nat Prod Rep 31:1247–1252

    Article  PubMed  CAS  Google Scholar 

  31. Hertweck C, Luzhetskyy A, Rebets Y et al (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190

    Article  PubMed  CAS  Google Scholar 

  32. Das A, Khosla C (2009) Biosynthesis of aromatic polyketides in bacteria. Acc Chem Res 42:631–639

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Yu D, Xu F, Zeng J et al (2012) Type III polyketide synthases in natural product biosynthesis. IUBMB Life 64:285–295

    Article  PubMed  CAS  Google Scholar 

  34. Hashimoto M, Nonaka T, Fujii I (2014) Fungal type III polyketide synthases. Nat Prod Rep 31:1306–1317

    Article  PubMed  CAS  Google Scholar 

  35. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    Article  PubMed  CAS  Google Scholar 

  36. Katz L (2009) The DEBS paradigm for type I modular polyketide synthases and beyond, 1st edn. Elsevier Inc., Amsterdam

    Google Scholar 

  37. Cortes J, Haydock SF, Roberts GA et al (1990) An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348:176–178

    Article  PubMed  CAS  Google Scholar 

  38. Weissman KJ (2015) Uncovering the structures of modular polyketide synthases. Nat Prod Rep 32:436–453

    Article  PubMed  CAS  Google Scholar 

  39. Kao CM, Katz L, Khosia C (1994) Engineered biosynthesis of a complete macrolactone in a heterologous host. Science 265:509–512

    Article  PubMed  CAS  Google Scholar 

  40. Wiesmann KEH et al (1995) Polyketide synthesis in vitro on a modular polyketide synthase. Chem Biol 2:582–589

    Google Scholar 

  41. Rowe CJ, Gaisser S, Staunton J et al (1998) Construction of new vectors for high-level expression in actinomycetes. Gene 216:215–223

    Article  PubMed  CAS  Google Scholar 

  42. Pinto A, Wang M, Horsman M et al (2012) 6-Deoxyerythronolide B synthase thioesterase-catalyzed macrocyclization is highly stereoselective. Org Lett 14:2278–2281

    Article  PubMed  CAS  Google Scholar 

  43. Siskos AP et al (2005) Molecular basis of Celmer’s rules: stereochemistry of catalysis by isolated ketoreductase domains from modular polyketide synthases. Chem Biol 12:1145–1153

    Article  PubMed  CAS  Google Scholar 

  44. Weissman KJ et al (1997) The molecular basis of Celmer’s rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. Biochemistry 36:13849–13855

    Article  PubMed  CAS  Google Scholar 

  45. Keatinge-Clay AT, Stroud RM (2006) The structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases. Structure 14:737–748

    Article  PubMed  CAS  Google Scholar 

  46. Nguyen T et al (2008) Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26:225–233

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Q et al (2011) Knocking out of tailoring genes eryK and eryG in an industrial erythromycin-producing strain of Saccharopolyspora erythraea leading to overproduction of erythromycin B, C and D at different conversion ratios. Lett Appl Microbiol 52:129–137

    Article  PubMed  CAS  Google Scholar 

  48. Khosla C (2009) Structures and mechanisms of polyketide synthases. J Org Chem 74:6416–6420

    Article  PubMed  CAS  Google Scholar 

  49. Keatinge-Clay AT (2012) The structures of type I polyketide synthases. Nat Prod Rep 29:1050–1073

    Article  PubMed  CAS  Google Scholar 

  50. Tsai S-CS, Ames BD (2009) Structural enzymology of polyketide synthases, 1st edn. Elsevier Inc., Amsterdam

    Google Scholar 

  51. Crosby J, Crump MP (2012) The structural role of the carrier protein—active controller or passive carrier. Nat Prod Rep 29:1111–1137

    Article  PubMed  CAS  Google Scholar 

  52. Tang Y, Kim C, Mathews II et al (2006) The 2.7-Å crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc Natl Acad Sci U S A 103:11124–11129

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Tang Y, Chen AY, Kim C-Y et al (2007) Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. Chem Biol 14:931–943

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Bergeret F et al (2012) Biochemical and structural study of the atypical acyltransferase domain from the mycobacterial polyketide synthase Pks13. J Biol Chem 287:33675–33690

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Park H, Kevany BM, Dyer DH et al (2014) A polyketide synthase acyltransferase domain structure suggests a recognition mechanism for its hydroxymalonyl-acyl carrier protein substrate. PLoS One 9:e110965

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Lau J, Cane DE, Khosla C (2000) Substrate specificity of the loading didomain of the erythromycin polyketide synthase. Biochemistry 39:10514–10520

    Article  PubMed  CAS  Google Scholar 

  57. Haydock SF et al (1995) Divergent sequence motifs correlated with the substrate specificity of (methyl) malonyl-CoA: acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett 374:246–248

    Article  PubMed  CAS  Google Scholar 

  58. Yadav G, Gokhale RS, Mohanty D (2003) Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J Mol Biol 328:335–363

    Article  PubMed  CAS  Google Scholar 

  59. Reeves CD et al (2001) Alteration of the substrate specificity of a modular polyketide synthase acyltransferase domain through site-specific mutations. Biochemistry 40:15464–15470

    Article  PubMed  CAS  Google Scholar 

  60. Lau J, Fu H, Cane DE et al (1999) Dissecting the role of acyltransferase domains of modular polyketide synthases in the choice and stereochemical fate of extender units. Biochemistry 38:1643–1651

    Article  PubMed  CAS  Google Scholar 

  61. Del Vecchio F et al (2003) Active-site residue, domain and module swaps in modular polyketide synthases. J Ind Microbiol Biotechnol 30:489–494

    Article  PubMed  CAS  Google Scholar 

  62. Lai JR, Koglin A, Walsh CT (2006) Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis. Biochemistry 45:14869–14879

    Article  PubMed  CAS  Google Scholar 

  63. Crump MP et al (1997) Solution structure of the actinorhodin polyketide synthase acyl carrier protein from Streptomyces coelicolor A3 (2). Biochemistry 36:6000–6008

    Article  PubMed  CAS  Google Scholar 

  64. Findlow SC, Winsor C, Simpson TJ et al (2003) Solution structure and dynamics of oxytetracycline polyketide synthase acyl carrier protein from Streptomyces rimosus. Biochemistry 42:8423–8433

    Article  PubMed  CAS  Google Scholar 

  65. Li Q, Khosla C, Puglisi JD, Liu CW (2003) Solution structure and backbone dynamics of the holo form of the frenolicin acyl carrier protein. Biochemistry 42:4648–4657

    Article  PubMed  CAS  Google Scholar 

  66. Chen AY, Schnarr NA, Kim C et al (2006) Extender unit and acyl carrier protein specificity of ketosynthase domains of the 6-Deoxyerythronolide B synthase. J Am Chem Soc 128:3067–3074

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Płoskoń E et al (2010) Recognition of intermediate functionality by acyl carrier protein over a complete cycle of fatty acid biosynthesis. Chem Biol 17:776–785

    Article  PubMed  CAS  Google Scholar 

  68. Evans SE et al (2009) Probing the interactions of early polyketide intermediates with the actinorhodin ACP from S. coelicolor A3(2). J Mol Biol 389:511–528

    Article  PubMed  CAS  Google Scholar 

  69. Johnson MNR, Londergan CH, Charkoudian LK (2014) Probing the phosphopantetheine arm conformations of acyl carrier proteins using vibrational spectroscopy. J Am Chem Soc 136:11240–11243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Gay DC et al (2014) A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase. Structure 22:444–451

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Khosla C, Gokhale RS, Jacobsen JR et al (1999) Tolerance and specificity of polyketide synthases. Annu Rev Biochem 68:219–253

    Article  PubMed  CAS  Google Scholar 

  72. Chen AY, Cane DE, Khosla C (2007) Structure-based dissociation of a type I polyketide synthase module. Chem Biol 14:784–792

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Watanabe K, Wang CCC, Boddy CN et al (2003) Understanding substrate specificity of polyketide synthase modules by generating hybrid multimodular synthases. J Biol Chem 278:42020–42026

    Article  PubMed  CAS  Google Scholar 

  74. Dutta S et al (2014) Structure of a modular polyketide synthase. Nature 510:512–517

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Whicher JR et al (2014) Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510:560–564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Edwards AL, Matsui T, Weiss TM et al (2014) Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase. J Mol Biol 426:2229–2245

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Davison J et al (2014) Insights into the function of trans-acyl transferase polyketide synthases from the SAXS structure of a complete module. Chem Sci 5:3081

    Article  CAS  Google Scholar 

  78. Cheng Y, Tang G, Shen B (2003) Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc Natl Acad Sci U S A 100:3149–3154

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. El-sayed AK et al (2003) Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem Biol 10:419–430

    Article  PubMed  CAS  Google Scholar 

  80. Moldenhauer J, Chen X-H, Borriss R et al (2007) Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase complex of the trans-AT family. Angew Chem Int Ed Engl 46:8195–8197

    Article  PubMed  CAS  Google Scholar 

  81. Piel J (2010) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 27:996–1047

    Article  PubMed  CAS  Google Scholar 

  82. Till M, Race PR (2014) Progress challenges and opportunities for the re-engineering of trans-AT polyketide synthases. Biotechnol Lett 36:877–888

    Article  PubMed  CAS  Google Scholar 

  83. Cheng Y-Q, Coughlin JM, Lim S-K et al (2009) Type I polyketide synthases that require discrete acyltransferases. Methods Enzymol 459:165–186

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Liu T, Huang Y, Shen B (2009) The bifunctional acyltransferase/decarboxylase LnmK as the missing link for-alkylation in polyketide biosynthesis. J Am Chem Soc 131:6900–6901

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Thomas CM, Hothersall J, Willis CL et al (2010) Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 8:281–289

    Article  PubMed  CAS  Google Scholar 

  86. Jensen K et al (2012) Polyketide proofreading by an acyltransferase-like enzyme. Chem Biol 19:329–339

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Wong FT, Jin X, Mathews II et al (2011) Structure and mechanism of the trans-acting acyltransferase from the disorazole synthase. Biochemistry 50:6539–6548

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Musiol EM et al (2011) Supramolecular templating in kirromycin biosynthesis: the acyltransferase KirCII loads ethylmalonyl-CoA extender onto a specific ACP of the trans-AT PKS. Chem Biol 18:438–444

    Article  PubMed  CAS  Google Scholar 

  89. Calderone CT, Kowtoniuk WE, Kelleher NL et al (2006) Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis. Proc Natl Acad Sci U S A 103:8977–8982

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Lopanik NB et al (2010) In vivo and in vitro trans-acylation by BryP, the putative bryostatin pathway acyltransferase derived from an uncultured marine symbiont. Chem Biol 15:1175–1186

    Article  CAS  Google Scholar 

  91. Chan YA, Thomas MG (2010) Recognition of (2S)-aminomalonyl-acyl carrier protein (ACP) and (2R)-hydroxymalonyl-ACP by acyltransferases in zwittermicin A biosynthesis. Biochemistry 49:3667–3677

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Musiol EM, Weber T (2012) Discrete acyltransferases involved in polyketide biosynthesis. Med Chem Commun 3:871

    Article  CAS  Google Scholar 

  93. Calderone CT (2008) Isoprenoid-like alkylations in polyketide biosynthesis. Nat Prod Rep 25:845–853

    Article  PubMed  CAS  Google Scholar 

  94. Calderone CT, Iwig DF, Dorrestein PC et al (2007) Incorporation of nonmethyl branches by isoprenoid-like logic: multiple beta-alkylation events in the biosynthesis of myxovirescin A1. Chem Biol 14:835–846

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Gu L et al (2006) Metabolic coupling of dehydration and decarboxylation in the curacin A pathway: functional identification of a mechanistically diverse enzyme pair. J Am Chem Soc 128:9014–9015

    Article  PubMed  CAS  Google Scholar 

  96. Simunovic V, Müller R (2007) 3-hydroxy-3-methylglutaryl-CoA-like synthases direct the formation of methyl and ethyl side groups in the biosynthesis of the antibiotic myxovirescin A. Chembiochem 8(5):497–500

    Article  PubMed  CAS  Google Scholar 

  97. Simunovic V, Müller R (2007) Mutational analysis of the myxovirescin biosynthetic gene cluster reveals novel insights into the functional elaboration of polyketide backbones. Chembiochem 8:1273–1280

    Article  PubMed  CAS  Google Scholar 

  98. McDaniel R, Ebert-Khosla S, Hopwood DA et al (1995) Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature 375:549–554

    Article  PubMed  CAS  Google Scholar 

  99. Long PF et al (2002) Engineering specificity of starter unit selection by the erythromycin-producing polyketide synthase. Mol Microbiol 43:1215–1225

    Article  PubMed  CAS  Google Scholar 

  100. Wang J-B, Pan H-X, Tang G-L (2011) Production of doramectin by rational engineering of the avermectin biosynthetic pathway. Bioorg Med Chem Lett 21:3320–3323

    Article  PubMed  CAS  Google Scholar 

  101. Rodriguez E, McDaniel R (2001) Combinatorial biosynthesis of antimicrobials and other natural products. Curr Opin Microbiol 4:526–534

    Article  PubMed  CAS  Google Scholar 

  102. McDaniel R et al (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel ‘unnatural’ natural products. Proc Natl Acad Sci U S A 96:1846–1851

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Oliynykl M, Brown MJB, Cort J et al (1996) A hybrid modular polyketide synthase obtained by domain swapping. Chem Biol 3:833–839

    Article  Google Scholar 

  104. Ruan X et al (1997) Acyltransferase domain substitutions in erythromycin polyketide synthase yield novel erythromycin derivatives. J Bacteriol 179:6416–6425

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Stassi DL et al (1998) Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering. Proc Natl Acad Sci U S A 95:7305–7309

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Kato Y et al (2002) Functional expression of genes involved in the biosynthesis of the novel polyketide chain extension unit, methoxymalonyl-acyl carrier protein, and engineered biosynthesis of 2-desmethyl-2-methoxy-6-deoxyerythronolide B. J Am Chem Soc 124:5268–5269

    Article  PubMed  CAS  Google Scholar 

  107. McDaniel R et al (1997) Gain-of-function mutagenesis of a modular polyketide synthase. J Am Chem Soc 119:4309–4310

    Article  CAS  Google Scholar 

  108. Bedford D, Jacobsen JR, Luo G et al (1996) A functional chimeric modular polyketide synthase generated via domain replacement. Chem Biol 3:827–831

    Article  PubMed  CAS  Google Scholar 

  109. Donadio S, Mcalpine JB, Sheldont PJ et al (1993) An erythromycin analog produced by reprogramming of polyketide synthesis. Proc Natl Acad Sci U S A 90:7119–7123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Walker MC et al (2013) Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways. Science 341:1089–1094

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Sundermann U et al (2013) Enzyme-directed mutasynthesis: a combined experimental and theoretical approach to substrate recognition of a polyketide synthase. ACS Chem Biol 8:443–450

    Article  PubMed  CAS  Google Scholar 

  112. Koryakina I, Williams GJ (2011) Mutant malonyl-CoA synthetases with altered specificity for polyketide synthase extender unit generation. Chembiochem 12:2289–2293

    Article  PubMed  CAS  Google Scholar 

  113. Koryakina I et al (2013) Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases. ACS Chem Biol 8:200–208

    Article  PubMed  CAS  Google Scholar 

  114. Lechner A et al (2013) Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering. ACS Synth Biol 2:379–383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Rix U, Fischer C, Remsing LL et al (2002) Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat Prod Rep 19:542–580

    Article  PubMed  CAS  Google Scholar 

  116. Olano C, Méndez C, Salas JA (2010) Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 27:571

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Till, M., Race, P.R. (2016). The Assembly Line Enzymology of Polyketide Biosynthesis. In: Evans, B. (eds) Nonribosomal Peptide and Polyketide Biosynthesis. Methods in Molecular Biology, vol 1401. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3375-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3375-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3373-0

  • Online ISBN: 978-1-4939-3375-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics