Skip to main content
Log in

Thermostable xylanase10B from Clostridium acetobutylicum ATCC824

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The Clostridium acetobutylicum xylanase gene xyn10B (CAP0116) was cloned from the type strain ATCC 824, whose genome was recently sequenced. The nucleotide sequence of C. acetobutylicum xyn10B encodes a 318-amino acid protein. Xyn10B consists of a single catalytic domain that belongs to family 10 of glycosyl hydrolases. The enzyme was purified from recombinant Escherichia coli. The Xyn10B enzyme was highly active toward birchwood xylan, oat-spelt xylan, and moderately active toward avicel, carboxymethyl cellulose, polygalacturonic acid, lichenan, laminarin, barley-β-glucan and various p-nitrophenyl monosaccharides. Xyn10B hydrolyzed xylan and xylooligosaccharides to produce xylobiose and xylotriose. The pH optimum of Xyn10B was 5.0, and the optimal temperature was 70°C. The enzyme was stable at 60°C at pH 5.0–6.5 for 1 h without substrate. This is one of a number of xylan-related activities encoded on the large plasmid in C. acetobutylicum ATCC 824.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3

Similar content being viewed by others

References

  1. Ali BRS, Romaniec MM, Hazlewood GP, Freedman RB (1995) Characterization of the subunits in an apparently homogeneous subpopulation of Clostridium thermocellum cellulosomes. Enzyme Microb Technol 17:705–711

    Article  CAS  PubMed  Google Scholar 

  2. Ali MK, Fukumura M, Sakano K, Karita S, Kimura T, Sakka K, Ohmiya K (1999) Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli. Biosci Biotechnol Biochem 63:1596–1604

    CAS  PubMed  Google Scholar 

  3. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    CAS  Google Scholar 

  4. Bradford MM (1997) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of dye binding. Anal Biochem 86:142–146

    Google Scholar 

  5. Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Recent advances in carbohydrate bioengineering. Royal Society of Chemistry, Cambridge, pp 3–12

  6. Derewenda U, Swenson L, Green R, Wei Y, Morosoli R, Shareck F, Kluepfel D, Derewenda ZS (1994) Crystal structure at 2.6-Å resolution, of the Streptomyces lividans xylanase A, a member of the F family of β-1,4-d-glycanases. J Biol Chem 269:20811–20814

    CAS  PubMed  Google Scholar 

  7. Grohmann K, Wymann CE, Himmel ME (1992) Potential for fuels from biomass and waste. In: Rowell RM, Schults TP, Narayan R (eds) Emerging technologies for materials and chemicals from biomass. American Chemical Society, Washington, D.C., pp 354–392

  8. Henrissat B, Bairoch A (1960) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    Google Scholar 

  9. Karlsson NE, Roxa EB, Holst O (1997) Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biochim Biophys Acta 1353:118–124

    PubMed  Google Scholar 

  10. Karlsson NE, Dahlberg L, Torto L, Gorton L, Holst O (1998) Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase Xyn1 from Rhodothermus marinus. J Biotechnol 60:23–35

    PubMed  Google Scholar 

  11. Katsube Y, Hata Y, Yamaguchi H (1990) Estimation of xylanase active site from crystalline structure. In: Ikehara M (ed) Protein engineering, Japan Scientific Societies Press, Tokyo, pp 91–96

  12. Keis S, Bennett CF, Ward VK, Jones DT (1995) Taxonomy and phylogeny of industrial solvent-producing clostridia. Int J Syst Bacteriol 45:693–705

    Google Scholar 

  13. Kim H, Jung KH, Pack MY (2000) Molecular characterization of XynX, a gene encoding a multidomain xylanase with a thermostabilizing domain from Clostridium thermocellum. Appl Microbiol Biotechnol 54:521–527

    Article  CAS  PubMed  Google Scholar 

  14. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    PubMed  Google Scholar 

  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  16. Lawson SL, Wakarchuck MW, Withers SG (1997) Positioning the acid/base catalyst in a glycosidase: studies with Bacillus circulans xylanase. Biochemistry 36:2257–2265

    Article  CAS  PubMed  Google Scholar 

  17. Lee SF, Forsberg CW, Gibbins LN (1985) Xylanolytic activity of Clostridium acetobutylicum. Appl Environ Microb 50:1068–1076

    CAS  Google Scholar 

  18. Lee SF, Forsberg CW, Rattray M (1987) Purification and characterization of two endoxylanases from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 53:644–650

    CAS  Google Scholar 

  19. Lo Leggio L, Kalogiannis S, Bhat MK, Pickersgill RW (1999) High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta) alpha-barrel architecture. Proteins 36:295–306

    Article  PubMed  Google Scholar 

  20. Lo Leggio L, Kalogiannis S, Eckert K, Teixeira SCM, Bhat MK, Andrei C, Pickersgill RW, Larsen S (2001) Substrate specificity and subunit mobility in T. aurantiacus Xylanase 10A. FEBS Lett 509:303–308

    Article  PubMed  Google Scholar 

  21. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  22. Nolling JG, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    CAS  PubMed  Google Scholar 

  23. Ohmiya K, Sakka K, Karita S, Kimura T (1997) Structure of cellulases and their applications. Biotechnol Genet Eng Rev 14:365–414

    CAS  PubMed  Google Scholar 

  24. Stackebrandt E, Rainey FA (1997) Phylogenetic relationships. In: Rood J, McClane BA, Songer JG, Titball RW (eds) The Clostridia: molecular biology and pathogenesis. Academic, San Diego pp 3–19

  25. Stackebrandt E, Kramer IJ, Swiderski J, Hippe H (1999) Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immunol Med Microbiol 24:253–258

    Article  CAS  PubMed  Google Scholar 

  26. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  PubMed  Google Scholar 

  27. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    CAS  Google Scholar 

  28. Tomme P, Warren AJ, Miller RC Jr, Kilburn DG, Gilkes NR (1995) Cellulose-binding domains-classification and properties. In: Sadder JM, Penner M (eds) The enzyme degradation of insoluble polysaccharides. American Chemical Society, Washington, D.C. pp 142–162

  29. Viikari L, Tenkanen M, Buchert J, Ratto M, Baily M, Siikaho M, Linko M (1993) Hemicelluloses for industrial applications. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB, Oxford, pp 131–182

  30. Wong KKY, Saddler JN (1992) Trichoderme xylanases: their properties and application. In: Visser J, Beldman G, Spmeren MAK, Voragen AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, pp 171–186

  31. Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and application. Microbiol Rev 52:305–317

    PubMed  Google Scholar 

  32. Wood WA, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    CAS  Google Scholar 

  33. Woods DR (ed) (1993) The clostridia and bio/technology. Butterworth-Heinemann, Boston

  34. Zeikus JG, Lee C, Lee YE, Shaha BC (1991) Thermostable saccharidases: new sources, uses and biodesign. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion. American Chemical Society, Washington, D.C., pp 36–51

Download references

Acknowledgements

This research was supported by the United States Department of Agriculture grant, 00-35500-926 and Robert A. Welch Foundation grants C-1268 and C-1372.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George N. Bennett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M.K., Rudolph, F.B. & Bennett, G.N. Thermostable xylanase10B from Clostridium acetobutylicum ATCC824. J IND MICROBIOL BIOTECHNOL 31, 229–234 (2004). https://doi.org/10.1007/s10295-004-0143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-004-0143-8

Keywords

Navigation