Skip to main content
Log in

Heterologous gene expression in Thermus thermophilus: β-galactosidase, dibenzothiophene monooxygenase, PNB carboxy esterase, 2-aminobiphenyl-2,3-diol dioxygenase, and chloramphenicol acetyl transferase

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Enzymes from thermophiles are preferred for industrial applications because they generally show improved tolerance to temperature, pressure, solvents, and pH as compared with enzymes from mesophiles. However, nearly all thermostable enzymes used in industrial applications or available commercially are produced as recombinant enzymes in mesophiles, typically Escherichia coli. The development of high-temperature bioprocesses, particularly those involving cofactor-requiring enzymes and/or multi-step enzymatic pathways, requires a thermophilic host. The extreme thermophile most amenable to genetic manipulation is Thermus thermophilus, but the study of expression of heterologous genes in T. thermophilus is in its infancy. While several heterologous genes have previously been expressed in T. thermophilus (Fridjonsson et al. in J Bacteriol 184:3385–3391, 2002, Koyama et al. in Appl Environ Microbiol 56:2251–225, 1990, Lasa et al. in J Bacteriol 174:6424–6431, 1992, Mathew et al. in Appl Environ Microbiol 58:421–425, 1992, Takagi et al. in J Ind Microbiol Biotechnol 23:214–217, 1999, Tamakoshi et al. in Extremophiles 5:17–22 2001), the data reported here include the first examples of the functional expression of a gene from an archaeal hyperthermophile (bglA from Pyrococcus woesei), a cofactor-requiring enzyme (dszC from Rhodococcus erythropolis IGTS8), and a two-component enzyme (carBa and carBb from Sphingomonas sp. GTIN11). A thermostable derivative of pnbA from Bacillus subtilis was also expressed, further expanding the list of genes from heterologous hosts that have been expressed in T. thermophilus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Payne WJ (1997) Basic research for the future: opportunities in microbiology for the coming decade. Report from the American Academy of Microbiology. http://www.asmusa.org/acasrc/acal.html

  2. Aiba S, Koizumi JI (1986) Effects of temperature on plasmid stability and penicillinase productivity of a transformant of Bacillus stearothermophilus. Ann N Y Acad Sci 469:245–252

    CAS  PubMed  Google Scholar 

  3. Mombelli E, Shehi E, Fusi P, Tortora P (2002) Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings. Biochem Biophys Acta 1595:392–396

    Article  CAS  PubMed  Google Scholar 

  4. Weigel J, Ljungdahl (1985) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3:39–107

    Google Scholar 

  5. Krahe M, Antranikian G, Markl H (1996) Fermentation of extremophilic microorganisms. FEMS Microbiol Rev 18:271–285

    CAS  Google Scholar 

  6. Stover EL (2000) Thermophilic treatment process as an alternative to mesophilic treatment for high-strength industrial waste residuals. Ind Wastewater 8:31–34

    CAS  Google Scholar 

  7. Brock TD (1997) The value of basic research: discovery of Thermus aquaticus and other extreme thermophiles. Genetics 146:1207–1210

    CAS  PubMed  Google Scholar 

  8. Fridjonsson O, Mattes R (2001) Production of recombinant alpha-galactosidases in Thermus thermophilus. Appl Environ Microbiol 67:4192–4198

    Article  CAS  PubMed  Google Scholar 

  9. Fridjonsson O, Watzlawick H, Mattes R (2002) Thermoadaptation of alpha-galactosidase AgaB1 in Thermus thermophilus. J Bacteriol 184:3385–3391

    Article  CAS  PubMed  Google Scholar 

  10. Pantazaki AA, Pritsa AA, Kyriakidis DA (2002) Biotechnologically relevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol 58:1–12

    Article  CAS  PubMed  Google Scholar 

  11. Tamakoshi M, Nakano Y, Kakizawa S, Yamagishi A, Oshima T (2001) Selection of stabilized 3-isopropylmalate dehydrogenase of Saccharomyces cerevisiae using the host-vector system of an extreme thermophile, Thermus thermophilus. Extremophiles 5:17–22

    Article  CAS  PubMed  Google Scholar 

  12. Raven N (1995) Genetics of Thermus. In: Williams R (ed) Thermus Species Plenum Press, New York, pp 157–184

  13. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    CAS  PubMed  Google Scholar 

  14. Dabrowski S, Maciunska J, Synowiecki J (1998) Cloning and nucleotide sequence of the thermostable beta-galactosidase gene from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme. Mol Biotechnol 10:217–222

    CAS  PubMed  Google Scholar 

  15. Dion M, Fourage L, Hallet JN, Colas B (1999) Cloning and expression of a beta-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme. Glycoconjugates J 16:27–37

    Article  CAS  Google Scholar 

  16. Ishida M, Oshima T (1994) Overexpression of genes of an extreme thermophile Thermus thermophilus, in Escherichia colicells. J Bacteriol 176:2767–2770

    CAS  PubMed  Google Scholar 

  17. Ishida M, Oshima T (1996) A leader open reading frame is essential for the expression in Escherichia coli of GC-rich leuB gene of an extreme thermophile, Thermus thermophilus. FEMS Microbiol Lett 135:137–142

    Article  CAS  PubMed  Google Scholar 

  18. Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19:261–278

    Article  CAS  PubMed  Google Scholar 

  19. Mather MW, Fee JA (1992) Development of plasmid cloning vectors for Thermus thermophilus HB8: expression of a heterologous, plasmid-borne kanamycin nucleotidyltransferase gene. Appl Environ Microbiol 58:421–425

    CAS  PubMed  Google Scholar 

  20. Takagi H, Suzumura A, Hoshino T, Nakamori S (1999) Gene expression of Bacillus subtilis subtilisin E in Thermus thermophilus. J Ind Microbiol Biotechnol 23:214–217

    Article  CAS  Google Scholar 

  21. Koyama Y, Okamoto S, Furukawa K (1990) Cloning of alpha- and beta-galactosidase genes from an extreme thermophile, Thermus strain T2, and their expression in Thermus thermophilus HB27. Appl Environ Microbiol 56:2251–2254

    CAS  PubMed  Google Scholar 

  22. Lasa I, de Grado M, de Pedro MA, Berenguer J (1992) Development of Thermus-Escherichia shuttle vectors and their use for expression of the Clostridium thermocellum celA gene in Thermus thermophilus. J Bacteriol 174:6424–6431

    CAS  PubMed  Google Scholar 

  23. Hoseki J, Yano T, Koyama Y, Kuramitsu S, Kagamiyama H (1999) Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem (Tokyo) 126:951–956

    Google Scholar 

  24. Kayser KJ, Kilbane JJ II (2001) New host-vector system for Thermus spp. based on the malate dehydrogenase gene. J Bacteriol 183:1792–1795

    Article  CAS  PubMed  Google Scholar 

  25. Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143(Pt 9):2961–2973

    PubMed  Google Scholar 

  26. Giver L, Gershenson A, Freskgard PO, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Nat Acad Sci U S A 95:12809–12813

    Article  CAS  Google Scholar 

  27. Kilbane JJ II, Daram A, Abbasian J, Kayser KJ (2002) Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem Biophys Res Commun 297:242–248

    Article  CAS  PubMed  Google Scholar 

  28. Byeon WH, Weisblum B (1984) Post-transcriptional regulation of chloramphenicol acetyl transferase. J Bacteriol 158:543–550

    CAS  PubMed  Google Scholar 

  29. De Rossi E, Brigidi P, Welker NE, Riccardi G, Matteuzzi D (1994) New shuttle vector for cloning in Bacillus stearothermophilus. Res Microbiol 145:579–583

    Article  PubMed  Google Scholar 

  30. Kayser KJ, Bielaga-Jones BA, Jackowski K, Odusan O, Kilbane JJ II (1993) Utilization of organosulfur compounds by axenic and mixed cell cultures of Rhodococcus rhodochrous IGTS8. J Gen Microbiol 139:3123–3129

    CAS  Google Scholar 

  31. Dabrowski S, Brillowska-Dabrowska A, Kur J (2000) Fluorescent protein vector for directional selection of PCR clones. Biotechniques. 29:800, 802, 804

    Google Scholar 

  32. Kayser KJ, Kwak JH, Park HS, Kilbane JJ II (2001) Inducible and constitutive expression using new plasmid and integrative expression vectors for Thermus sp. Lett Appl Microbiol 32:412–418

    Article  CAS  PubMed  Google Scholar 

  33. de Grado M, Castan P, Berenguer J (1999) A high-transformation-efficiency cloning vector for Thermus thermophilus. Plasmid 42:241–245

    PubMed  Google Scholar 

  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour, New York

    Google Scholar 

  35. Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340

    CAS  PubMed  Google Scholar 

  36. Seymour D, Verbeek A, Hrudey S, Fedorak P (1997) Acute toxicity and aqueous solubility of some condensed thiophenes and their microbial metabolites. Environ Toxicol Chem 16:658–665

    CAS  Google Scholar 

  37. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709

    PubMed  Google Scholar 

  38. Furukawa K, Miyazaki T (1986) Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol 166:392–398

    CAS  PubMed  Google Scholar 

  39. Park H-S, Kilbane JJ II (2004) Gene expression studies of Thermus therophilus promoters PdnaK, Parg, and Pscs-mdh. Lett Appl Microbiol 38:415–422

    Article  PubMed  Google Scholar 

  40. Xi L, Squires CH, Monticello DJ, Childs JD (1997) A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230:73–75

    CAS  PubMed  Google Scholar 

  41. Alton NK, Vapnek D (1979) Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature 282:864–869

    CAS  PubMed  Google Scholar 

  42. Zaccolo M, Gherardi E (1999) The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase. J Mol Biol 285:775–783

    Article  CAS  PubMed  Google Scholar 

  43. Osbourne MS, Grossman TH, August PR, MacNeil IA (2000) Tapping into microbial diversity for natural products drug discovery. ASM News 66:411–417

    Google Scholar 

  44. Akanuma S, Yamagishi A, Tanaka N, Oshima T (1998) Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution. Protein Sci 7:698–705

    CAS  PubMed  Google Scholar 

  45. Kayser JK, Cleveland L, Park H-S, Kwak J-H, Kolhatkar A, Kilbane JJ II (2002) Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization. Appl Microbiol Biotechnol 59:737–745

    Article  CAS  PubMed  Google Scholar 

  46. Iwata K, Nojiri H, Shimizu K, Yoshida T, Habe H, Omori T (2003) Expression, purification, and characterization of 2′-aminobiphenyl-2,3-diol 1,2-dioxygenase from carbazole-degrader Pseudomonas resinovorans strain CA10. Biosci Biotechnol Biochem 67:300–307

    Article  CAS  PubMed  Google Scholar 

  47. Yokoyama A, Shizuri Y, Hoshino T, Sandmann G (1996) Thermocryptoxanthins: novel intermediates in the carotenoid biosynthetic pathway of Thermus thermophilus. Arch Microbiol 165:342–345

    Article  CAS  PubMed  Google Scholar 

  48. Castan P, de Pedro MA, Risco C, Valles C, Fernandez LA, Schwarz H, Berenguer J (2001) Multiple regulatory mechanisms act on the 5′ untranslated region of the S-layer gene from Thermus thermophilus HB8. J Bacteriol 183:1491–1494

    PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by DOE contract DE-AC26–99BC15219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Kilbane II.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HS., Kayser, K.J., Kwak, JH. et al. Heterologous gene expression in Thermus thermophilus: β-galactosidase, dibenzothiophene monooxygenase, PNB carboxy esterase, 2-aminobiphenyl-2,3-diol dioxygenase, and chloramphenicol acetyl transferase. J IND MICROBIOL BIOTECHNOL 31, 189–197 (2004). https://doi.org/10.1007/s10295-004-0130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-004-0130-0

Keywords

Navigation