Skip to main content
Log in

Biofilms, bacterial signaling, and their ties to marine biology

  • Review Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Much of what is know about quorum sensing has come from the study of marine biology. The original description of the phenomenon was based on the study of marine bacteria and the luminescent pathway. More recently, aquatic organisms have been found to inhibit bacterial fouling of surfaces by blocking signaling pathways in the bacteria. These signaling effects have, over the last 5 years, been linked to biofilms. However, this correlation is not as straight forward as originally believed. Here, a brief overview of quorum sensing, and background on biofilms is provided, followed by a discussion of more recent work looking at the effects that environment may have on signal expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45:39–49

    CAS  PubMed  Google Scholar 

  2. Blake RC, Ohmura N (1998) Aporusticyanin mediates the specific adhesion of Thiobacillus ferrooxidans to pyrite. Society for Industrial Microbiology Annual Meeting Program 1998, p. 58

  3. Bleazard BJ (2001) The role of oxygen and the interaction of human neutrophils with viable planktonic and biofilm Pseudomonas aeruginosa. Master's Montana State University–Bozeman

  4. Camper AK (2000) biofilms in drinking water treatment and distribution. Biofilms: recent advances in their study and control. Harwood, Amsterdam 311–332

  5. Chamberlain A (1992) The role of adsorbed layers in bacterial adhesion. Biofilms—Science and Technology. Kluwer Academic, Dordrecht, pp 59–67

  6. Characklis WG, Marshall KC (1990) Biofilms. Wiley, New York

  7. Chen X, Stewart PS (2002) Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol 59:718–720

    Article  CAS  PubMed  Google Scholar 

  8. Costerton JW, Stewart PS, Greenberg EP(1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  9. Costerton JW, Stewart PS (2001) Battling biofilms. Sci Am 285:74–81

    CAS  Google Scholar 

  10. Davies D, Geesey GG (1995) Regulation of the alginate biosynthesis gene alg C in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61:860–867

    CAS  PubMed  Google Scholar 

  11. Davies D, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of bacterial biofilm. Science 280:295–298

    CAS  PubMed  Google Scholar 

  12. De Beer D, Stoodley P (1995) Relation between the structure of an aerobic biofilm and transport phenomena. Water Sci Technol 32:11–18

    Google Scholar 

  13. De Beer D, Stoodley P, Lewandowski Z (1994) Liquid flow in heterogeneous biofilms. Biotechnol Bioeng 44:636–641

    Google Scholar 

  14. De Kievit TR, Kakai Y, Register JK, Pesci EC, Iglewski BH (2002) Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiol Lett 212:101–106

    Article  PubMed  Google Scholar 

  15. De Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271

    Google Scholar 

  16. Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743

    Article  CAS  PubMed  Google Scholar 

  17. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    CAS  PubMed  Google Scholar 

  18. Elkins JG, Hassett DJ,Stewart PS, Schweizer HP, McDermott TR (1999) Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl Environ Microbiol 65:4594–4600

    CAS  PubMed  Google Scholar 

  19. Foster TJ, Hook M(1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488

    Article  CAS  PubMed  Google Scholar 

  20. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468.:439–468

  21. Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202–256

  22. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    CAS  PubMed  Google Scholar 

  23. Grobe KJ, Zahller J, Stewart PS (2002) Role of dose concentration in biocide efficacy against Pseudomonas aeruginosa biofilms. J Ind Microbiol Biotechnol 29:10–15

    Article  CAS  PubMed  Google Scholar 

  24. Hahn HP (1997) The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa —a review. Gene 192:99–108

    Article  CAS  PubMed  Google Scholar 

  25. Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS, McFeters G, Passador L, Iglewski BH (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093

    Article  CAS  PubMed  Google Scholar 

  26. Hojo S, Komatsu M, Okuda R, Takahashi N, Yamada T(1994) Acid profiles and pH of carious dentin in active and arrested lesions. J Dent Res 73:1853–1857

    CAS  PubMed  Google Scholar 

  27. Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5:254–258

  28. Lee W, de Beer D(1995) Oxygen and pH microprofiles above corroding mild steel covered with a biofilm. Biofouling 8:273–280

    Google Scholar 

  29. Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming HC (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3–16

    CAS  PubMed  Google Scholar 

  30. Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518

    CAS  PubMed  Google Scholar 

  31. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    CAS  PubMed  Google Scholar 

  32. O'Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  CAS  PubMed  Google Scholar 

  33. Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97:8789–8793

    Article  CAS  PubMed  Google Scholar 

  34. Pasmore M, Todd P, Smith S, Baker D, Silverstein J, Coons D, Bowman CN (2001) Effect of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. J Membr Sci 194:15–32

    Article  CAS  Google Scholar 

  35. Perea E (2001) Clinical relevance of laboratory susceptibility data. Int J Antimicrob Agents 18 Suppl 1:S29–32.:S29-S32

  36. Peyton BM, Characklis WG (1993) A statistical analysis of the effects of substrate utilization and shear stress on the kinetics of biofilm detachment. Biotechnol Bioeng 41:728–735

    Google Scholar 

  37. Picioreanu C, Van Loosdrecht MC, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 69:504–515

    Article  CAS  PubMed  Google Scholar 

  38. Ridgeway H, Justice C, Whittaker C, Argo D, Olson B (1984) Biofilm fouling of RO membranes—Its nature and effect on treatment of water for reuse. J Am Water Works Association 94–102

  39. Rutala WA, Weber DJ (1997) Uses of inorganic hypochlorite (bleach) in health-care facilities. Clin Microbiol Rev 10:597–610

    CAS  PubMed  Google Scholar 

  40. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  CAS  PubMed  Google Scholar 

  41. Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476

    Article  CAS  PubMed  Google Scholar 

  42. Shirtliff M, Mader J, Camper A (2002) Molecular interactions in biofilms. Chem Biol 9:859

    Article  CAS  PubMed  Google Scholar 

  43. Spormann AM (1999) Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63:621–641

    CAS  PubMed  Google Scholar 

  44. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet Jul 14, 358:135–138

  45. Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW (2001) Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67:5608–5613

    Article  CAS  PubMed  Google Scholar 

  46. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S (2000) Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182:6482–6489

    Article  CAS  PubMed  Google Scholar 

  47. Verran J, Boyd RD, Hall KE, West R (2002) The detection of microorganisms and organic material on stainless steel food contact surfaces. Biofouling 18:167–176

    Article  Google Scholar 

  48. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864

    Article  CAS  PubMed  Google Scholar 

  49. Willison JH, Easterbrook KB, Coombs RW (1977) The attachment of bacterial spinae. Can J Microbiol 23:258–266

    CAS  PubMed  Google Scholar 

  50. Yang Z, Ma X, Tong L, Kaplan HB, Shimkets LJ, Shi W (2000) Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182:5793–5798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Matt Parsek and Dr. Morten Hentzer for providing the GFP reporter strain used in this work. Thanks to Sequoia Sciences for their aid in examining antifouling chemistries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Pasmore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasmore, M., Costerton, J.W. Biofilms, bacterial signaling, and their ties to marine biology. J IND MICROBIOL BIOTECHNOL 30, 407–413 (2003). https://doi.org/10.1007/s10295-003-0069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-003-0069-6

Keywords

Navigation