Skip to main content
Log in

Performance of a recombinant strain of Streptomyces lividans for bioconversion of penicillin G to deacetoxycephalosporin G

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract.

We examined the performance of Streptomyces lividans strain W25 containing a hybrid expandase (deacetoxycephalosporin C synthase; DAOCS) gene, obtained by in vivo recombination between the expandase genes of S. clavuligerus and Nocardia lactamdurans for resting-cell bioconversion of penicillin G to deacetoxycephalosporin G. Strain W25 carried out a much more effective level of bioconversion than the previously used strain, S. clavuligerus NP1. The two strains also differed in the concentrations of FeSO4 and α-ketoglutarate giving maximal activity. Whereas NP1 preferred 1.8 mM FeSO4 and 1.3 mM α-ketoglutarate, recombinant W25 performed best at 0.45 mM FeSO4 and 1.9 mM α-ketoglutarate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Adrio JL, Cho H, Piret JM, Demain AL (1999) Inactivation of deacetoxycephalosporin C synthase in extracts of Streptomyces clavuligerus during bioconversion of penicillin G to deacetoxycephalosporin G. Enzyme Microb Technol 25:497–501

    Article  CAS  Google Scholar 

  2. Adrio JL, Hintermann G, Demain AL, Piret JM (2002) Construction of hybrid deacetoxycephalosporin synthases (expandases) by in vivo homeologous recombination. Enzyme Microb Technol 31:932–940

    Google Scholar 

  3. Baez-Vasquez MA, Adrio JL, Piret JM, Demain AL (1999) Further studies on the bioconversion of penicillin G into deacetoxycephalosporin G by resting cells of Streptomyces clavuligerus NP1. Appl Biochem Biotechnol 81:145–152

    PubMed  Google Scholar 

  4. Chauvette R, Pennington PA, Ryan CW, Cooper RDC, Jose IG, Wright FL, Van Heyningen EN, Huffman GW (1971) Chemistry of cephalosporin antibiotics. 21. Conversion of penicillins to cephalosporins. J Org Chem 36:1259–1267

    CAS  PubMed  Google Scholar 

  5. Cho H, Adrio JL, Luengo JM, Wolfe S, Ocran S, Hintermann G, Piret JM, Demain AL (1998) Elucidation of conditions allowing conversion of penicillin G and other penicillins to deacetoxycephalosporins by resting cells and extracts of Streptomyces clavuligerus NP1. Proc Natl Acad Sci USA 95:11544–11548

    Article  CAS  PubMed  Google Scholar 

  6. Demain AL, Baez-Vasquez MA (2000) Immobilized Streptomyces clavuligerus NP1 cells for biotransformation of penicillin G into deacetoxycephalosporin G. Appl Biochem Biotechnol 87:135–140

    CAS  PubMed  Google Scholar 

  7. Demain AL, Adrio JL, Piret JM (2000) Bioconversion of penicillins into cephalosporins. In: Kirst HA, Yeh W-K, Zmijewski MJ Jr (eds), Enzyme technologies for pharmaceutical and biotechnological applications. Dekker, New York, pp 61–88

  8. Fernandez MJ, Adrio JL, Piret JM, Wolfe S, Ro S, Demain AL (1999) Stimulatory effect of growth in the presence of alcohols on biotransformation of penicillin G into cephalosporin-type antibiotics by resting cells of Streptomyces clavuligerus NP1. Appl Microbiol Biotechnol 52:484–488

    Article  CAS  PubMed  Google Scholar 

  9. Gao Q, Demain AL (2001a) Improvement in the bioconversion of penicillin G to deacetoxycephalosporin G by elimination of agitation and addition of decane. Appl Microbiol Biotechnol 57:511–513

    Article  CAS  PubMed  Google Scholar 

  10. Gao Q, Demain AL (2001b) Effect of solvents on bioconversion of penicillin G to deacetoxycephalosporin G. J Antibiot 54:958–961

    Google Scholar 

  11. Gao Q, Demain AL (2002) Improvement in the resting-cell bioconversion of penicillin G to deacetoxycephalosporin G by addition of catalase. Lett Appl Microbiol 34:290–292

    Article  CAS  PubMed  Google Scholar 

  12. Jensen SE, Westlake DWS, Bowers RJ, Wolfe S (1982) Cephalosporin production by cell free extracts from Streptomyces clavuligerus. J Antibiot 35:1351–1360

    Google Scholar 

  13. Kohsaka M, Demain AL (1976) Conversion of isopenicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem Biophys Res Commun 70:465–473

    CAS  PubMed  Google Scholar 

  14. Maeda K, Luengo JM, Ferrero O, Wolfe S, Lebedev MY, Fang A, Demain AL (1995) The substrate specificity of deacetoxycephalosporin C synthase (expandase) is extremely narrow. Enzyme Microb Technol 17:231–234

    Article  CAS  Google Scholar 

  15. Mahro B, Demain AL (1987) In vivo conversion of penicillin N into a cephalosporin type antibiotic by a non-producing mutant of Streptomyces clavuligerus. Appl Microbiol Biotechnol 27:272–275

    CAS  Google Scholar 

  16. Shen Y, Wolfe S, Demain AL (1984) Desacetoxycephalosporin C synthetase: importance of order of cofactor/reactant addition. Enzyme Microb Technol 6:402–404

    CAS  Google Scholar 

  17. Smith JS, Hillier AJ, Lees GJ, Jago GR (1975) The nature of the stimulation of the growth of Streptococcus lactis by yeast extract. J Dairy Res 42:123–138

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Antibioticos, Milan, Italy. We appreciate the interest and encouragement of Ermanno Bernasconi. Thanks are given to Aiqi Fang for assistance and advice. We also acknowledge the gifts used for general support of this laboratory from the following companies: ADM, Fujisawa Pharmaceutical Co. Ltd., Kao Corporation, Meiji Seika Kaisha Ltd., Pfizer Inc., Schering-Plough Research Institute, Wyeth Research and Yamasa Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Demain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Q., Piret, J.M., Adrio, J.L. et al. Performance of a recombinant strain of Streptomyces lividans for bioconversion of penicillin G to deacetoxycephalosporin G. J IND MICROBIOL BIOTECHNOL 30, 190–194 (2003). https://doi.org/10.1007/s10295-003-0034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-003-0034-4

Keywords.

Navigation