Skip to main content
Log in

Probabilistic approach to detect and correct GNSS NLOS signals using an augmented state vector in the extended Kalman filter

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Non-line-of-sight (NLOS) global navigation satellite system (GNSS) signals are a major factor that limits the GNSS positioning accuracy in urban areas. An advanced GNSS signal processing technique, the vector tracking loop (VTL), has been applied to NLOS detection and correction, and its feasibility and superior performance have been reported in recent studies. In a VTL-based GNSS receiver, the navigation solutions (i.e., position, velocity and time (PVT)) are used to predict the signal tracking loop parameters. The difference between the predicted signal and the received signal within the code discriminator output can be used to detect NLOS reception. We generate the probability of NLOS detection by modeling the code discriminator outputs using Gaussian fitting. If this probability is larger than a predefined threshold, NLOS reception is deemed to occur. Then, the NLOS-induced pseudorange measurement bias is estimated as a state variable in the state vector, i.e., an augmented state vector is created for the extended Kalman filter. Two GPS L1 C/A signal datasets from a static test and a dynamic test are investigated using the proposed algorithm. The experimental results indicate that when NLOS reception is present, the proposed approach outperforms the other two methods, i.e., the standard VTL method without considering NLOS reception and the VTL-based NLOS detection and correction method with multicorrelators, in terms of the positioning performance. In addition, the proposed approach has a lower computational load than the VTL method with multicorrelators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Xu, B. & Hsu, LT. Probabilistic approach to detect and correct GNSS NLOS signals using an augmented state vector in the extended Kalman filter. GPS Solut 25, 72 (2021). https://doi.org/10.1007/s10291-021-01101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-021-01101-6

Keywords

Navigation