Skip to main content
Log in

Endpoint-based optimal fractal interpolation for predicting BDS-3 system time offsets

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

In order to improve the interoperability within the Global Navigation Satellite System (GNSS), the International Committee on Global Navigation Satellite Systems published a joint statement in December 2019 that stated that all GNSS providers agree to monitor and broadcast the time offsets between each system timescale and the Universal Time Coordinated (UTC) or the rapid realization of UTC (UTCr). This commitment requires the study of precise prediction models for system time offsets. The prediction model of system time offsets is different from that of the atomic clock because of the control of the system timescale. The offsets between the system time of the Beidou Satellite Navigation System-3 (BDS-3) and the National Time Service Center (NTSC), called [UTC(NTSC)-BDT], have two main periods of 12 h and 24 h, according to the Fast Fourier Transform analysis. The rescaled range (R/S) analysis demonstrates that it has long memory, making it a fractal time series with a memory period of about 10.4 h. While using the fractal interpolation method to predict the [UTC(NTSC)-BDT] series, we found that the prediction error reaches its minimum value if adding disturbance on the estimated endpoint of the forecasted interval. After verifying the correlation between the estimated endpoints with the minimal interpolation error and minimal prediction error and proving the existence and uniqueness of the estimated endpoint with the minimal interpolation error, we established the endpoint-based optimal fractal interpolation prediction method. The experimental results indicate that the average prediction accuracy of the proposed prediction model is improved by 57.90% and 39.26% compared to that of a quadratic model and standard fractal prediction model, respectively. The accuracy analysis results of numerical tests indicate that the proposed prediction model can restrain the divergence of prediction error. Finally, we transform the [UTC(NTSC)-BDT] into [UTCr -BDT] using the [UTCr-UTC(NTSC)] published by the Bureau International des Poids et Mesures (BIPM) to meet the requirement of GNSS interoperability. The prediction accuracies of daily [UTCr-BDT] using the proposed prediction model are no more than 1.5 ns with uncertainty about 6 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The datasets of [UTCr-UTC(NTSC)] analyzed during the current study are available in the BIPM repository, ftp://ftp2.bipm.org/pub/tai/Rapid-UTC/utcrlab/utcr-ntsc. The [UTC(NTSC)-BDT] data that support the findings of this study are available from NTSC CAS, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are, however, available from the authors upon reasonable request and with permission of NTCS CAS.

References

Download references

Acknowledgements

This study is supported by Shaanxi Postdoctoral research fund (No. 2017BSHEDZZ22), National Natural Science Fund of China (No. 41774025, 61976176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Specific calculation process of fractal interpolation bias

Appendix: Specific calculation process of fractal interpolation bias

The main purpose of this appendix is to provide the specific computing process of parameter \(\beta_{j}\). This will help us ensure the existence and uniqueness of the estimated endpoint disturbance for minimal interpolation error.

First, we will simplify the parameters defined by equation (16). Since the interpolation series \(\{ t_{i} \}\) (\(i = 0,1, \cdots ,N\)) is always an arithmetic progression, we have:

$$\left\{ \begin{gathered} a_{i} = \frac{{t_{i} - t_{i - 1} }}{{t_{N} - t_{0} }} = \frac{1}{N} \hfill \\ a_{N + 1} = \frac{{t_{N + 1} - t_{N} }}{{t_{N + 1} - t_{0} }} = \frac{1}{N + 1} \hfill \\ \end{gathered} \right.$$
(40)

Then, the sums of \(e_{i}\), \(c_{i}\) and \(f_{i}\) are calculated as follows:

$$\begin{aligned} & \sum\limits_{i = 1}^{N} {e_{i} } = \sum\limits_{i = 1}^{N} {\frac{{t_{N} t_{i - 1} - t_{0} t_{i} }}{{t_{N} - t_{0} }}} = \frac{1}{{t_{N} - t_{0} }}\sum\limits_{i = 1}^{N} {\left( {t_{N} t_{i - 1} - t_{0} t_{i} } \right)} \\ & \quad = \frac{1}{{t_{N} - t_{0} }}\left( {\sum\limits_{i = 1}^{N} {t_{N} t_{i - 1} } - \sum\limits_{i = 1}^{N} {t_{0} t_{i} } } \right) = \frac{1}{{t_{N} - t_{0} }}\left( {t_{N} \sum\limits_{i = 1}^{N} {t_{i - 1} } - t_{0} \sum\limits_{i = 1}^{N} {t_{i} } } \right) \\ & \quad = \frac{1}{{t_{N} - t_{0} }}\left[ {t_{N} \left( {\sum\limits_{i = 0}^{N} {t_{i} } - t_{N} } \right) - t_{0} \left( {\sum\limits_{i = 0}^{N} {t_{i} } - t_{0} } \right)} \right] \\ & \quad = \frac{1}{{t_{N} - t_{0} }}\left[ {\left( {t_{N} - t_{0} } \right)\sum\limits_{i = 0}^{N} {t_{i} } + t_{0}^{2} - t_{N}^{2} } \right] = \sum\limits_{i = 0}^{N} {t_{i} } - \left( {t_{N} + t_{0} } \right) \\ & \quad = \left( {t_{N} + t_{0} } \right)\frac{N + 1}{2} - \left( {t_{N} + t_{0} } \right) = \left( {t_{N} + t_{0} } \right)\frac{N - 1}{2} \\ \end{aligned}$$
(41)
$$\begin{aligned} \sum\limits_{i = 1}^{N} {c_{i} } & = \sum\limits_{i = 1}^{N} {\frac{{x_{i} - x_{i - 1} - \mu_{i} (x_{N} - x_{0} )}}{{t_{N} - t_{0} }}} = \sum\limits_{i = 1}^{N} {\frac{{x_{i} - x_{i - 1} }}{{t_{N} - t_{0} }}} - \frac{{(x_{N} - x_{0} )}}{{t_{N} - t_{0} }}\sum\limits_{i = 1}^{N} {\mu_{i} } \\ & = \frac{{x_{N} - x_{0} }}{{t_{N} - t_{0} }} - \frac{{x_{N} - x_{0} }}{{t_{N} - t_{0} }}\sum\limits_{i = 1}^{N} {\mu_{i} } = \frac{{x_{N} - x_{0} }}{{t_{N} - t_{0} }}\left( {1 - \sum\limits_{i = 1}^{N} {\mu_{i} } } \right) \\ \end{aligned}$$
(42)
$$\begin{aligned} & \sum\limits_{i = 1}^{N} {f_{i} } = \sum\limits_{i = 1}^{N} {\frac{{t_{N} x_{i - 1} - t_{0} x_{i} - \mu_{i} (t_{N} x_{0} - t_{0} x_{N} )}}{{t_{N} - t_{0} }}} \\ & \quad = \frac{1}{{t_{N} - t_{0} }}\left( {t_{N} \sum\limits_{i = 1}^{N} {x_{i - 1} } - t_{0} \sum\limits_{i = 1}^{N} {x_{i} } - (t_{N} x_{0} - t_{0} x_{N} )\sum\limits_{i = 1}^{N} {\mu_{i} } } \right) \\ & \quad = \frac{1}{{t_{N} - t_{0} }}\left( {t_{N} \sum\limits_{i = 0}^{N} {x_{i} } - t_{N} x_{N} - t_{0} \sum\limits_{i = 0}^{N} {x_{i} } + t_{0} x_{0} - (t_{N} x_{0} - t_{0} x_{N} )\sum\limits_{i = 1}^{N} {\mu_{i} } } \right) \\ & \quad = \sum\limits_{i = 0}^{N} {x_{i} } + \frac{1}{{t_{N} - t_{0} }}\left( {t_{0} x_{0} - t_{N} x_{N} - (t_{N} x_{0} - t_{0} x_{N} )\sum\limits_{i = 1}^{N} {\mu_{i} } } \right) \\ & \quad = \sum\limits_{i = 0}^{N} {x_{i} } - \left( {\frac{{x_{N} \left( {t_{N} - t_{0} } \right) + t_{0} \left( {x_{N} - x_{0} } \right)}}{{t_{N} - t_{0} }} + \frac{{x_{0} \left( {t_{N} - t_{0} } \right) - t_{0} \left( {x_{N} - x_{0} } \right)}}{{t_{N} - t_{0} }}\sum\limits_{i = 1}^{N} {\mu_{i} } } \right) \\ & \quad = \sum\limits_{i = 0}^{N} {x_{i} } - x_{N} - t_{0} \frac{{x_{N} - x_{0} }}{{t_{N} - t_{0} }} - \left( {x_{0} - t_{0} \frac{{x_{N} - x_{0} }}{{t_{N} - t_{0} }}} \right)\sum\limits_{i = 1}^{N} {\mu_{i} } \\ & \quad = \sum\limits_{i = 0}^{N} {x_{i} } - x_{N} + x_{0} - x_{0} - t_{0} \frac{{x_{N} - x_{0} }}{{t_{N} - t_{0} }} - \left( {x_{0} - t_{0} \frac{{x_{N} - x_{0} }}{{t_{N} - t_{0} }}} \right)\sum\limits_{i = 1}^{N} {\mu_{i} } \\ & \quad = \sum\limits_{i = 0}^{N} {x_{i} } + \left( {x_{0} - t_{0} \frac{{x_{N} - x_{0} }}{{t_{N} - t_{0} }}} \right)\left( {1 - \sum\limits_{i = 1}^{N} {\mu_{i} } } \right) - x_{N} - x_{0} \\ & \quad = \sum\limits_{i = 1}^{N - 1} {x_{i} } + \left( {\frac{{t_{N} x_{0} - t_{0} x_{N} }}{{t_{N} - t_{0} }}} \right)\left( {1 - \sum\limits_{i = 1}^{N} {\mu_{i} } } \right) \\ \end{aligned}$$
(43)

For the parameter \(e_{N + 1}\), we have:

$$\begin{aligned} e_{N + 1} & = \frac{{t_{N + 1} t_{N} - t_{0} t_{N + 1} }}{{t_{N + 1} - t_{0} }} = \frac{{t_{N + 1} t_{N} - t_{N} t_{0} + t_{N} t_{0} - t_{0} t_{N + 1} }}{{t_{N + 1} - t_{0} }} \\ & = \frac{{t_{N} \left( {t_{N + 1} - t_{0} } \right) + t_{0} \left( {t_{N} - t_{N + 1} } \right)}}{{t_{N + 1} - t_{0} }} = t_{N} - \frac{{t_{0} }}{N + 1} \\ \end{aligned}$$
(44)

According to equation (31), the expression of \(\beta_{j}\) contains two parts:

$$\begin{aligned} \beta_{j} & = \underbrace {{\mu_{j} \left( {(1 - \lambda )(x_{N} - \mu_{N + 1} x_{0} ) + \mu_{N + 1} x^{*} } \right)}}_{{{\text{Part}}\;{\text{I}}}} \\ & \quad { + }\underbrace {{\phi_{j} \left( {L_{N + 1} (t^{*} )} \right) - \frac{1}{N}\sum\limits_{i = 1}^{N} {F_{j} \left( {L_{i} (t^{*} ),F_{i} (t^{*} ,x^{*} )} \right)} }}_{{{\text{Part}}{\kern 1pt} {\text{II}}}} \\ \end{aligned}$$
(45)

Since Part I of \(\beta_{j}\) is already simplified, we will focus on the last part. According to (15):

$$\begin{aligned} & \phi_{j} \left( {L_{N + 1} (t^{*} )} \right) - \frac{1}{N}\sum\limits_{i = 1}^{N} {F_{j} \left( {L_{i} (t^{*} ),F_{i} (t^{*} ,x^{*} )} \right)} \\ & \quad = \phi_{j} \left( {L_{N + 1} (t^{*} )} \right) - \frac{1}{N}\sum\limits_{i = 1}^{N} {\left( {\phi_{j} \left( {L_{i} (t^{*} )} \right) + \mu_{j} F_{i} (t^{*} ,x^{*} )} \right)} \\ & \quad = \frac{1}{N}\sum\limits_{i = 1}^{N} {\phi_{j} \left( {L_{N + 1} (t^{*} )} \right)} - \frac{1}{N}\sum\limits_{i = 1}^{N} {\phi_{j} \left( {L_{i} (t^{*} )} \right)} - \frac{1}{N}\sum\limits_{i = 1}^{N} {\mu_{j} F_{i} (t^{*} ,x^{*} )} \\ & \quad = \frac{1}{N}\sum\limits_{i = 1}^{N} {\left[ {\phi_{j} \left( {L_{N + 1} (t^{*} )} \right) - \phi_{j} \left( {L_{i} (t^{*} )} \right)} \right]} - \frac{{\mu_{j} }}{N}\sum\limits_{i = 1}^{N} {F_{i} (t^{*} ,x^{*} )} \\ \end{aligned}$$
(46)

For the first segment of (46), using (40), (41) and (44), we obtain:

$$\begin{aligned} & \frac{1}{N}\sum\limits_{i = 1}^{N} {\left[ {\phi_{j} \left( {L_{N + 1} (t^{*} )} \right) - \phi_{j} \left( {L_{i} (t^{*} )} \right)} \right]} \\ & \quad = \frac{1}{N}\sum\limits_{i = 1}^{N} {\left( {c_{j} L_{N + 1} (t^{*} ) + f_{j} - c_{j} L_{i} (t^{*} ) - f_{j} } \right)} = \frac{{c_{j} }}{N}\sum\limits_{i = 1}^{N} {\left( {L_{N + 1} (t^{*} ) - L_{i} (t^{*} )} \right)} \\ & \quad = \frac{{c_{j} }}{N}\sum\limits_{i = 1}^{N} {\left( {a_{N + 1} t^{*} + e_{N + 1} - a_{i} t^{*} - e_{i} } \right)} \\ & \quad = \frac{{c_{j} }}{N}\left[ {t^{*} \left( {\sum\limits_{i = 1}^{N} {a_{N + 1} } - \sum\limits_{i = 1}^{N} {a_{i} } } \right) + \sum\limits_{i = 1}^{N} {e_{N + 1} } - \sum\limits_{i = 1}^{N} {e_{i} } } \right] \\ & \quad = \frac{{c_{j} }}{N}\left[ {t^{*} \left( {\frac{N}{N + 1} - 1} \right) + N\left( {t_{N} - \frac{{t_{0} }}{N + 1}} \right) - \left( {t_{N} + t_{0} } \right)\frac{{\left( {N - 1} \right)}}{2}} \right] \\ & \quad = \frac{{c_{j} }}{N}\left( { - \frac{{t^{*} }}{N + 1} + Nt_{N} - \frac{{Nt_{0} }}{N + 1} - \frac{{\left( {N - 1} \right)t_{N} }}{2} - \frac{{\left( {N - 1} \right)t_{0} }}{2}} \right) \\ & \quad = \frac{{c_{j} }}{N}\left( { - \frac{{t^{*} }}{N + 1} + \frac{N + 1}{2}t_{N} - \frac{{Nt_{0} }}{N + 1} - \frac{{\left( {N + 1} \right)t_{0} }}{2} + t_{0} } \right) \\ & \quad = \frac{{c_{j} }}{N}\left( {\frac{{t_{0} - t^{*} }}{N + 1} + \frac{N + 1}{2}\left( {t_{N} - t_{0} } \right)} \right) \\ \end{aligned}$$
(47)

For the second segment of (46), using (42) and (43), we obtain:

$$\begin{aligned} & \sum\limits_{i = 1}^{N} {F_{i} (t^{*} ,x^{*} )} = \sum\limits_{i = 1}^{N} {c_{i} t^{*} } + \sum\limits_{i = 1}^{N} {\mu_{i} x^{*} } + \sum\limits_{i = 1}^{N} {f_{i} } \\ & \quad = t^{*} \sum\limits_{i = 1}^{N} {c_{i} } + x^{*} \sum\limits_{i = 1}^{N} {\mu_{i} } + \sum\limits_{i = 1}^{N} {f_{i} } \\ & \quad = t^{*} \frac{{x_{N} - x_{0} }}{{t_{N} - t_{0} }}\left( {1 - \sum\limits_{i = 1}^{N} {\mu_{i} } } \right) + x^{*} \sum\limits_{i = 1}^{N} {\mu_{i} } + \sum\limits_{i = 1}^{N - 1} {x_{i} } + \left( {\frac{{t_{N} x_{0} - t_{0} x_{N} }}{{t_{N} - t_{0} }}} \right)\left( {1 - \sum\limits_{i = 1}^{N} {\mu_{i} } } \right) \\ & \quad = \left( {\frac{{t^{*} \left( {x_{N} - x_{0} } \right) + t_{N} x_{0} - t_{0} x_{N} }}{{t_{N} - t_{0} }} - x^{*} } \right)\left( {1 - \sum\limits_{i = 1}^{N} {\mu_{i} } } \right) + x^{*} + \sum\limits_{i = 1}^{N - 1} {x_{i} } \\ & \quad = \left( {\frac{{x_{N} \left( {t^{*} - t_{0} } \right) + x_{0} \left( {t_{N} - t^{*} } \right)}}{{t_{N} - t_{0} }} - x^{*} } \right)\left( {1 - \sum\limits_{i = 1}^{N} {\mu_{i} } } \right) + x^{*} + \sum\limits_{i = 1}^{N - 1} {x_{i} } \\ & \quad = \left( {\eta x_{N} + \left( {1 - \eta } \right)x_{0} - x^{*} } \right)\left( {1 - \sum\limits_{i = 1}^{N} {\mu_{i} } } \right) + x^{*} + \sum\limits_{i = 1}^{N - 1} {x_{i} } \\ \end{aligned}$$
(48)

where \(\eta = {{\left( {t^{*} - t_{0} } \right)} \mathord{\left/ {\vphantom {{\left( {t^{*} - t_{0} } \right)} {\left( {t_{N} - t_{0} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {t_{N} - t_{0} } \right)}}\). Substituting results (46), (47) and (48) into (45), the specific expression of \(\beta_{j}\) is given as:

$$\begin{aligned} \beta_{j} & = \mu_{j} \left( {(1 - \lambda )(x_{N} - \mu_{N + 1} x_{0} ) + \mu_{N + 1} x^{*} } \right) \\ & \quad { + }\phi_{j} \left( {L_{N + 1} (t^{*} )} \right) - \frac{1}{N}\sum\limits_{i = 1}^{N} {F_{j} \left( {L_{i} (t^{*} ),F_{i} (t^{*} ,x^{*} )} \right)} \\ & = \mu_{j} \left( {(1 - \lambda )(x_{N} - \mu_{N + 1} x_{0} ) + \mu_{N + 1} x^{*} } \right) \\ & \quad + \frac{{c_{j} }}{N}\left( {\frac{{t_{0} - t^{*} }}{N + 1} + \frac{N + 1}{2}\left( {t_{N} - t_{0} } \right)} \right) \\ & \quad - \frac{{\mu_{j} }}{N}\left[ {\left( {\eta x_{N} + \left( {1 - \eta } \right)x_{0} - x^{*} } \right)\left( {1 - \sum\limits_{i = 1}^{N} {\mu_{i} } } \right) + x^{*} + \sum\limits_{i = 1}^{N - 1} {x_{i} } } \right] \\ \end{aligned}$$
(49)

It is obvious that parameter \(\beta_{j}\) does not contain \(\tilde{x}_{N + 1}\). This completes the calculation of the fractal interpolation bias \(\Delta \Gamma\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Zou, D. Endpoint-based optimal fractal interpolation for predicting BDS-3 system time offsets. GPS Solut 25, 51 (2021). https://doi.org/10.1007/s10291-020-01081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-020-01081-z

Keywords

Navigation