Skip to main content
Log in

Feasibility analysis of baseband architectures for multi-GNSS receivers

  • Review Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Receiver design challenges arising from new GNSS signals include required intermediate frequency, sampling rate, modulation type, spreading code, and secondary code. Several architectures are examined here aiming at a best model for multi-GNSS implementation, especially the underlying baseband and software realization platform. In this pursuit, it is found that the multi-core and multiple processor architectures are promising candidates. General purpose processors or digital signal processors demand excessive resources and power consumption. Alternative architectures are presented along with the general cost function, used to evaluate architecture efficiency. Taking into account (1) the superiority of a hardware time-interleaving technique, (2) RAM-based design versus register-based design, and (3) careful consideration of modern GNSS signal attributes, the proposed programmable custom pipeline correlator core provides flexibility and significantly reduces resources and power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akos DM, Pini M (2006) Effect of sampling frequency on GNSS receiver performance. Navigation 53(2):85–95

    Article  Google Scholar 

  • Akos DM, Normark PL, Enge P, Hansson A, Rosenlind A, Stahlberg C, Svensson F (2001) Global positioning system software receiver (GPSRx) implementation in low cost/power programmable processors. In: Proceedings of ION GPS 2001. Institute of Navigation, Salt Lake City, UT, pp 2851–2858

  • BEIDOU (2013) Navigation satellite system signal in space interface control document open service signal

  • BEIDOU (2014) ICD describes second civil signal; officials describe progress, plans

  • Benmoussa Y, Boukhobza J, Senn E, Benazzouz D (2013) Energy consumption modeling of h. 264/avc video decoding for GPP and DSP. In: Digital system design (DSD), IEEE Euromicro conference on, pp 890–897

  • Culler DE, Singh JP, Gupta A (1999) Parallel computer architecture: a hardware/software approach. Gulf Professional Publishing, Houston

    Google Scholar 

  • Foucras M, Julien O, Macabiau C, Ekambi B (2012) A novel computationally efficient GALILEO E1 OS acquisition method for GNSS software receiver. In: Proceedings of ION ITM 2012. Institute of Navigation, New Beach, CA, pp 365–383

  • GALILEO (2010) Open service signal-in-space interface control document. http://www.gsc-europa.eu/gnss-markets/segments-applications/os-sis-icd. Accessed 4 April 2016

  • Glenn LE, Humphreys TE, Bhatti JA, Joplin AJ, O’Hanlon BW, Powell SP (2014) Demonstration of a space capable miniature dual frequency GNSS receiver. Navigation 61(1):53–64

    Article  Google Scholar 

  • GPS (2014a) Interface Specification, ICD-GPS-200, rev h. http://www.gps.gov/technical/icwg/. Accessed 4 April 2016

  • GPS (2014b) Interface Specification, ICD-GPS-705, rev d. http://www.gps.gov/technical/icwg/. Accessed 4 April 2016

  • Heckler GW, Garrison JL (2004) Architecture of a reconfigurable software receiver. In: Proceedings of ION GNSS 2005. Institute of Navigation, Long Beach, CA, pp 947–955

  • Heckler GW, Garrison JL (2006) SIMD correlator library for GNSS software receivers. GPS Solut 10(4):269–276

    Article  Google Scholar 

  • Hein G, Pany T, Wallner S, Won JH (2006) Platforms for a future GNSS receiver. Inside GNSS 1(2):56–62

    Google Scholar 

  • Hobiger T, Gotoh T, Amagai J, Koyama Y, Kondo T (2010) A GPU based real-time GPS software receiver. GPS Solut 14(2):207–216

    Article  Google Scholar 

  • Holzer M, Knerr B, Belanović P, Rupp M (2006) Efficient design methods for embedded communication systems. EURASIP J Embed Syst 2006(1):21–24

    Article  Google Scholar 

  • Humphreys TE, Ledvina BM, Psiaki ML, Kinter PM (2006) GNSS receiver implementation on a DSP: Status, challenges, and prospects. In: Proceedings of ION GNSS 2006. Institute of Navigation, Fort Worth, TX, pp. 2370–2382

  • Humphreys TE, Bhatti JA, Pany T, Ledvina BM, OHanlon BW (2009) Exploiting multicore technology in software-defined GNSS receivers. In: Proceedings of ION ITM 2009. Institute of Navigation, Savannah, GA, pp 326–338

  • Intel Corporation (2015) Basic architecture. Intel 64 and IA-32 architectures optimization reference manual.http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html Accessed 26 Apr 2016

  • IRNSS (2014) IRNSS signal in space ICD for standard positioning service, version 1.0. http://www.isro.gov.in/irnss-programme. Accessed 26 Apr 2016

  • Isci C, Buyuktosunoglu A, Chen CY, Bose P, Martonosi M (2006) An analysis of efficient multi-core global power management policies: maximizing performance for a given power budget. IMICRO-39. IEEE/ACM, pp 347–358

  • Jang M, Kim K, Kim K (2011) The performance analysis of ARM NEON technology for mobile platforms. In: Proceedings of ACM symposium on research in applied computation, pp 104–106

  • Kaplan ED, Hegarty CJ (2005) Understanding GPS: principles and applications. Artech House, London

    Google Scholar 

  • Kappen G, Noll TG(2006) Application specific instruction processor based implementation of a GNSS receiver on an FPGA. In: Proceedings of design, automation and test in Europe. DATE ‘06, vol 2

  • Lin T, O’Driscoll C, Lachapelle G (2011) Development of a context-aware vector-based high-sensitivity GNSS software receiver. In: Proceedings of ION ITM 2011. Institute of Navigation, San Diego, CA, pp 1043–1055

  • Massimiliano S, Dovis F, Girau G, Mulassano P (2006) A flexible FPGA/DSP board for GNSS receivers design. In: Research in Microelectronics and Electronics 2006, Ph.D., IEEE, Otranto, pp 77–80

  • McGraw GA, Braasch MS (1999) GNSS multipath mitigation using gated and high resolution correlator concepts. In: Proceedings of ION NTM 1999. Institute of Navigation, San Diego, CA, pp 333–342

  • Mumford PJ, Parkinson K, Dempster AG (2006) The Namuru open GNSS research receiver. In: Proceedings of ION GNSS 2006. Institute of Navigation, Fort Worth, TX, pp 2847–2855

  • Nagasaka H, Maruyama N, Nukada A, Endo T, Matsuoka S (2010) Statistical power modeling of GPU kernels using performance counters. In: International green computing conference, pp 115–122

  • Parkinson K, Mumford P, Glennon E, Shivaramaiah N, Dempster A, Rizos C (2011) A low cost Namuru v3 receiver for spacecraft operations. In: IGNSS Symposium, pp 15–17

  • Petovello MG, O’Driscoll C, Lachapelle G, Borio D, Murtaza H (2008) Architecture and benefits of an advanced GNSS software receiver. J GPS 7(2):156–168

    Article  Google Scholar 

  • QZSS (2013) Interface specification (IS-QZSS). http://qz-vision.jaxa.jp/USE/is-qzss/index_e.html. Accessed 4 April 2016

  • Raasakka HJ, Ahonen T, Nurmi J (2009) Multicore software-defined radio architecture for gnss receiver signal processing. EURASIP J Embed Syst 1(1):1–10

    Google Scholar 

  • Revnivykh S (2010) GLONASS status and progress. In: Proceedings of ION GNSS 2010. Institute of Navigation, Portland, OR, pp 609–633

  • Rotem E, Naveh A, Rajwan D, Ananthakrishnan A, Weissmann E (2012) Power-management architecture of the Intel microarchitecture code-named sandy bridge. MICRO IEEE 32(2):20–27

    Article  Google Scholar 

  • Sauriol B, Landry R Jr (2007) FPGA-based architecture for high throughput, flexible and compact real-time GNSS software defined receiver. In: Proceedings of ION NTM 2007. Institute of Navigation, San Diego, CA, pp 708–717

  • Sciuto D, Salice F, Pomante L, FornaciariW (2002) Metrics for design space exploration of heterogeneous multiprocessor embedded systems. In: Proceedings of the 10th ACM international symposium on hardware/software codesign, pp 55–60

  • Shivaramaiah NC, Jamadagni H, Srikantaiah M, Chikkabbaiah V (2004) Software-aided sequential multi-tap correlator for fast acquisition. In: Proceedings of ION GNSS 2004. Institute of Navigation, Long Beach, CA, pp 1547–1554

  • Shivaramaiah NC, Dempster AG, Rizos C (2008) Exploiting the secondary codes to improve signal acquisition performance in GALILEO receivers. In: Proceedings of ION GNSS 2008. Institute of Navigation, Savanah, GA, pp 1497–1506

  • Tran VT, Shivaramaiah NC, Dempster AG (2015a) An efficient secondary code transition cancellation correlator for fast multi-GNSS acquisition. In: IGNSS Symposium

  • Tran VT, Shivaramaiah NC, Dempster AG (2015b) Programmable custom multi-core architectures for multi- constellation GNSS receiver. In: IGNSS Symposium

  • Tran VT, Shivaramaiah NC, Diessel O, Dempster AG (2015c) A programmable multi-gnss baseband receiver. In: Circuits and systems, Proceedings of IEEE international symposium on (ISCAS). IEEE, pp 1178–1181

  • Trelles O, Prins P, Snir M, Jansen RC (2011) Big data, but are we ready? Nat Rev Genet 12(3):224

    Article  Google Scholar 

  • Urlichich Y, Subbotin V, Stupak G, Dvorkin V, Povalyaev A, Karutin S (2011) Innovation GLONASS developing strategies for the future. GPS World 22(4):42

    Google Scholar 

  • Waelchli G, Baracchi-Frei M, Botteron C, Farine PA (2010) Distributed arithmetic for efficient base-band processing in real-time GNSS software receivers. JECE 2010(2):1–5

    Google Scholar 

  • Yavits L, Morad A, Ginosar R (2014) The effect of communication and synchronization on Amdahl’s law in multicore systems. Parallel Comput 40(1):1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinh T. Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, V.T., Shivaramaiah, N.C. & Dempster, A.G. Feasibility analysis of baseband architectures for multi-GNSS receivers. GPS Solut 21, 1–11 (2017). https://doi.org/10.1007/s10291-016-0542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-016-0542-0

Keywords

Navigation