Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

This chapter discusses the basic architecture of global navigation satellite system (GlossaryTerm

GNSS

) receivers. It starts with a breakdown of the receiver function into individual building blocks along the processing chain (front-end, down conversion, mixers, numerically controlled oscillators, correlators, tracking loops, data demodulation, navigation, user interface), and describes the respective functions. A dedicated section describes selected hardware solutions (example chipsets for front-end and baseband processing, offering different levels of integration and capabilities). Finally, receiver designs performing the signal processing in pure software as well as receivers based on configurable hardware are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

analog-to-digital converter

AGC:

automatic gain control

ASIC:

application specific integrated circuit

AWGN:

additive white Gaussian noise

BOC:

binary offset carrier

BPSK:

binary phase-shift keying

CDMA:

code division multiple access

CL:

long code

CM:

moderate-length code

CMOS:

complementary metal oxide semiconductor

CPU:

central processing unit

CRC:

cyclic redundancy check

CRPA:

controlled radiation pattern antenna

CSAC:

chip scale atomic clock

DLL:

delay lock loop

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DMA:

Defense Mapping Agency

DME:

distance measuring equipment

DSP:

digital signal processor

ESA:

European Space Agency

FAA:

US Federal Aviation Administration

FDMA:

frequency division multiple access

FEC:

forward error correction

FFT:

fast Fourier transform

FOC:

full operational capability

FPGA:

field programmable gate array

FRPA:

fixed radiation pattern antenna

GEO:

geostationary Earth orbit

GGTO:

GPS-to-Galileo time offset

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GMS:

ground mission segment

GNSS:

global navigation satellite system

GPS:

Global Positioning System

GRAM:

GPS receiver application module

HEO:

highly elliptical orbit

ICD:

interface control document

IEEE:

Institute of Electrical and Electronics Engineers

IF:

intermediate frequency

IOV:

in-orbit validation

LHCP:

left-hand circular polarized

LNA:

low-noise amplifier

NH:

Neuman-Hofman (code)

NMEA:

National Marine Electronics Association

OCXO:

oven controlled crystal oscillator

OEM:

original equipment manufacturer

PCB:

printed circuit board

PDA:

personal digital assistant

PLL:

phase lock loop

PPP:

precise point positioning

PPS:

precise positioning service

RAIM:

receiver autonomous integrity monitoring

RF:

radio frequency

RHCP:

right-hand circular polarized

RTCA:

Radio Technical Commission for Aeronautics

RTCM:

Radio Technical Commission for Maritime Services

RTK:

real-time kinematic

SAASM:

selective availability anti-spoofing module

SA:

selective availability

SAW:

surface acoustic wave

SDR:

software defined radio

SoC:

system-on-a-chip

TACAN:

tactical air navigation (system)

TCXO:

temperature compensated crystal oscillator

TTFF:

time-to-first-fix

USGS:

United States Geological Survey

USNO:

United States Naval Observatory

UTC:

Coordinated Universal Time

WGS:

World Geodetic System

References

  1. B.W. Parkinson: Introduction and heritage of NAVSTAR the global positioning system. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker (AIAA, Washington 1996) pp. 3–28

    Chapter  Google Scholar 

  2. P.C. Ould, R.J. van Wechel: All-digital GPS receiver mechanization, Navigation 28(3), 178–188 (1981)

    Article  Google Scholar 

  3. Data Sheet on MX 4200 12 channel up-grade (Magnavox Electronic System Company, Torrance 1994)

    Google Scholar 

  4. A.J. van Dierendonck, P. Fenton, T. Ford: Theory and performance of narrow correlator spacing in a GPS receiver, J. Inst. Navig. 39(3), 265–284 (1992)

    Article  Google Scholar 

  5. S. Mikkola: Generalized Development Model (GDM) (Institute of Navigation Navigation Museum, ION, Virginia) http://www.ion.org/museum/item_view.cfm?cid=7&scid=9&iid=9

  6. Receiver 3 A Configuration, Product Information Sheet (Rockwell International, Collins Government Avionics Division, Cedar Rapids 1987)

    Google Scholar 

  7. R. Hoech, R. Bartholomew, V. Moen, K. Grigg: Design, capabilities and performance of a miniaturized airborne GPS receiver for space applications, Proc. IEEE PLANS, Las Vegas (1994) pp. 1–7

    Google Scholar 

  8. TI-4100 Owner’s Manual (Texas Instruments, Lewisville 1983)

    Google Scholar 

  9. A.J. van Dierendonck: GPS receivers. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker (AIAA, Washington 1996) pp. 329–407

    Google Scholar 

  10. Global Positioning Product Handbook (GEC-Plessey Semiconductors, Plymouth 1996)

    Google Scholar 

  11. J. Ashjaee, R. Lorenz: Precision GPS surveying after Y-Code, Proc. ION GPS, Albuquerque (1992) pp. 657–659

    Google Scholar 

  12. A.J. van Dierendonck: Understanding GPS receiver terminology: A tutorial on what those words mean, Proc. Int. Symp. Kinemat. Syst. Geod. Geomat. Navig., KIS94, Banff (1994)

    Google Scholar 

  13. C.C. Counselman: Method and system for determining position using signals from satellites, US Patent 4667203A (1982), Aero Service Div.

    Google Scholar 

  14. K.T. Woo: Optimum semi-codeless carrier phase tracking of L2, Navigation 47(2), 82–99 (2000)

    Article  Google Scholar 

  15. J.M. Fraile-Ordonez, G.W. Hein, H. Landau, B. Eissfeller, A. Jansche, N. Balteas: First experience with differential GLONASS/GPS positioning, Proc. ION GPS, Albuquerque (1992) pp. 153–158

    Google Scholar 

  16. P. Misra, P. Enge: Global Positioning System – Signals, Measurements, and Performance, 2nd edn. (Ganga-Jamuna, Lincoln 2006)

    Google Scholar 

  17. Inside GNSS: NovAtel confirmed for long-term Galileo contract (2007) www.insidegnss.com/node/247

  18. IfEN GmbH: Multi-GNSS navigation test receiver, NAvX-NTR, Data-Sheet, 2012

    Google Scholar 

  19. A. Simsky, J.M. Sleewaegen, W. de Wild, F. Wilms: Galileo receiver development at septentrio, Proc. ENC GNSS, Munich (2005) pp. 1–14

    Google Scholar 

  20. A. Ruegamer, I. Suberviola, F. Foerster, G. Rohmer, A. Konovaltsev, N. Basta, M. Meurer, J. Wendel, M. Kaindl, S. Baumann: A Bavarian initiative towards a robust Galileo PRS receiver, Proc. ION GNSS, Portland (2011) pp. 3668–3678

    Google Scholar 

  21. Unicore Communications, Inc.: http://www.unicorecomm.com/

  22. OLinkStar Co., Ltd.: http://www.olinkstar.com/

  23. ComNav Technology Ltd.: http://www.comnavtech.com/

  24. NovAtel: GPSAntenna Model 501, User Manual (NovAtel) http://www.novatel.com/assets/Documents/Manuals/om-20000001.pdf

  25. J.D. Kraus, K.R. Carver: Electromagnetics (McGraw-Hill, Tokyo 1973)

    Google Scholar 

  26. EC: Galileo Overall Architecture Definition – GALA (European Commission, Brussels 2000) Gala-Aspi-dd087

    Google Scholar 

  27. E. Levine: Overview of GPS antennas, Proc. COMCAS, Tel Aviv (2009) pp. 1–4

    Google Scholar 

  28. D. Reynolds, A. Brown, A. Reynolds: Miniaturized GPS antenna array technology and predicted anti-jam performance, Proc. ION GPS, Nashville (1999) pp. 777–786

    Google Scholar 

  29. W. Kunysz: A three dimensional choke ring ground plane antenna, Proc. ION GPS/GNSS, Portland (2003) pp. 1883–1888

    Google Scholar 

  30. EADS Astrium, GNSS Evolution Programme: Assessment of the Use of C-Band for GNSS, Final Report (GNSS-CBA-TN-ASTD-00023, June 2009)

    Google Scholar 

  31. Data Manual ADC12D1800RF 12 Bit, Single 3.6 GSPS RF Sampling ADC (Texas Instruments, 2015)

    Google Scholar 

  32. H.T. Friis: Noise figures in radio receivers, Proc. IRE 32(7), 419–422 (1944)

    Article  Google Scholar 

  33. T. Felhauer: On the impact of RF front-end group delay variations on GLONASS pseudorange accuracy, Proc. ION GPS, Kansas City (ION, Virginia 1997) pp. 1527–1532

    Google Scholar 

  34. J.B. Neumann, M. Bates, R.S. Harvey: GLONASS receiver inter-frequency biases – Calibration methods and feasibility, Proc. ION GPS, Nashvilley (ION, Virginia 1999) pp. 329–338

    Google Scholar 

  35. T. Pany: Navigation Signal Processing for GNSS Software Receivers (Artech House, Norwood 2010)

    Google Scholar 

  36. T. Pany, B. Eissfeller: Code and phase tracking of generic PRN signals with sub-nyquist sample rates, Navigation 51(2), 143–159 (2004)

    Article  Google Scholar 

  37. R.G. Vaughan, N.L. Scott, D.R. White: The theory of bandpass sampling, IEEE Trans. Signal Proc. 39(9), 1973–1983 (1991)

    Article  Google Scholar 

  38. R.G. Vaughan, N.L. Scott, D.R. White: Analog-to-digital converters and their applications in radio receivers, IEEE Commun. Mag. 33(5), 39–45 (1995)

    Article  Google Scholar 

  39. D.M. Akos: A Software Radio Approach to Global Navigation Satellite System Receiver Design, Ph.D. Thesis (Ohio Univ., Athens 1997)

    Google Scholar 

  40. J.H. Won: Studies on the Software-Based GPS Receiver and Navigation Algorithms, Ph.D. Thesis (Ajou Uni., Suwon 2004)

    Google Scholar 

  41. A.R. Pratt, J.A. Avila-Rodriguez: Time and amplitude quatization losses in GNSS receivers, Proc. ION GPS, Savannah (ION, Virginia 2009) pp. 3179–3197

    Google Scholar 

  42. C.J. Hegarty: Analytic model for GNSS receiver implementation losses, Proc. ION GPS, Savannah (2009) pp. 3165–3178

    Google Scholar 

  43. D. Borio: A Statistical Theory for GNSS Signal Acquisition, Ph.D. Thesis (Politechnico di Torino, Turin 2008)

    Google Scholar 

  44. J.J. Spilker Jr., F.D. Natali: Interference effects and mitigation techniques. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker (AIAA, Washington 1996) pp. 717–771

    Chapter  Google Scholar 

  45. Chip Scale Atomic Clock, SA.45s CSAC, Data Sheet (Symmetricom, San Jose 2011)

    Google Scholar 

  46. D. Allan: Statistics of atomic frequency standards, Proc. IEEE 54(2), 221–230 (1989)

    Article  Google Scholar 

  47. A.R. Pratt: G-effects on oscillator performance in GPS receivers, Navigation 36(1), 63–75 (1989)

    Article  Google Scholar 

  48. F.L. Walls, J.O. Gary, A. Gallagher, L. Sweet, R. Sweet: Time domain frequency stability calculated from the frequency domain: An update, Proc. 4th Eur. Freq. Time Forum, Neuchatel (1990) pp. 197–204

    Google Scholar 

  49. M. Irsigler, B. Eissfeller: PLL tracking performance in the presence of oscillator phase noise, GPS Solutions 5(4), 45–57 (2002)

    Article  Google Scholar 

  50. P.S. Otellini: (Investor Meeting 2012, Intel, Santa Clara, 2012)

    Google Scholar 

  51. G.E. Moore: No exponential is forever: But forever can be delayed!, Proc. IEEE Int. Solid-State Circuits Conf., San Francisco (2003) pp. 20–23

    Google Scholar 

  52. H. Kurz: Visions of semiconductors, Proc. Munich Satell. Navig. Summit, Munich (2010)

    Google Scholar 

  53. F. Schwierz, J.J. Liou: Modern Microwave Transistors – Theory, Design and Performance (John-Wiley, Hoboken 2003)

    Google Scholar 

  54. G. Kappen, T.G. Noll: Application specific instruction processor based implementation of a GNSS receiver on an FPGA, Proc. DATE, Munich (2006) pp. 1–8

    Google Scholar 

  55. TMS 320 DSP Product Overview (Texas Instruments, 1998)

    Google Scholar 

  56. S. Furber: ARM System-on-Chip Architecture (Addison Wesley, New York 2000)

    Google Scholar 

  57. J. Ashjaee: GPS: The challenge of a single chip, GPS World 12(5), 24–27 (2001)

    Google Scholar 

  58. M. Tran, C. Hegarty: Receiver algorithms for the new civil GPS signals, Proc. ION NTM, San Diego (ION, Virginia 2002) pp. 778–789

    Google Scholar 

  59. C. Hegarty, A.J. van Dierendonck, D. Bobyn, M. Tran, T. Kim, J. Grabowski: Suppression of pulsed interference through blanking, Proc. IAIN World Congr. ION AM, San Diego (ION, Virginia 2000) pp. 399–408

    Google Scholar 

  60. O. Leisten, R. Hasler, M Malsor: Design and performance of a miniature GPS/GLONASS receiver, Microw. Eng. Eur., 33–38 (Dec./Jan. 1992)

    Google Scholar 

  61. BeiDou Navigation Satellite System Signal In Space Interface Control Document (Test Version) (China Satellite Navigation Office, Beijing 2012)

    Google Scholar 

  62. F. Pisoni, P.G. Mattos: A BeiBou hardware receiver based on the STA8088 chipset, Proc. ICL-GNSS 2013, Turin (2013) pp. 1–6

    Google Scholar 

  63. InsideGNSS: China Mandates Use of BeiDou GNSS on Some Commercial Vehicles, InsideGNSS (2013) http://www.insidegnss.com/note/3356

  64. E. Emile, S.L. Saks: GPS receiver application module (GRAM) open system architecture (OSA) for next-generation DoD GPS receivers, Proc. ION NTM, Long Beach (1998) pp. 297–307

    Google Scholar 

  65. K. Goussak, T. Kusserow, B. Goblish: Review and analysis of the selective availability anti-spoofing module (SAASM) card integration program (SCIP), Proc. ION AM, Denver (ION, Virginia 1998) pp. 585–592

    Google Scholar 

  66. H. Fruehauf, S. Callaghan: SAASM and direct P(Y) signal acquisition, GPS World 13(7), 24–33 (2002)

    Google Scholar 

  67. R. DiEsposti: Proposed operations concepts and flexible UE architectures for modernized user equipment SIS utilization for transition from test mode to IOC through FOC, Proc. ION NTM, San Diego (ION, Virginia 2007) pp. 548–560

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Dr. Xingqun Zhan, Professor and Associate Dean of the School of Aeronautics and Astronautics at Shanghai Jiao Tong University, Shanghai, China for his support on early BeiDou receiver development in Sect. 13.1.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Eissfeller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eissfeller, B., Won, JH. (2017). Receiver Architecture. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_13

Download citation

Publish with us

Policies and ethics