Skip to main content

Detection of local tourism systems by threshold accepting


Despite the importance of tourism as a leading industry in the development of a country’s economy, there is a lack of criteria and methodologies for the detection, promotion, and governance of local tourism systems. We propose a quantitative approach for the detection of local tourism systems the size of which is optimal with respect to geographical, economic, and demographical criteria: we formulate the problem as an optimisation problem and we solve it by a metaheuristic approach; then we compare the obtained results with standard clustering approaches and with an exact optimisation solver. Results show that our approach requires low computational times to provide results that are better than other clustering techniques and than the current approach used by local authorities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Andria J, di Tollo G (2015) Clustering local tourism systems by threshold acceptance. In: Mora AM, Squillero G (eds) Applications of evolutionary computation. Lecture notes in computer science, vol 9028. Springer International Publishing, New York, pp 629–640

  2. Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cybern 3:301–315

    Article  Google Scholar 

  3. Brandenburger A, Nalebuff B (1996) Co-opetition. Doubleday, New York

  4. Brenner T, Gildner A (2006) The long-term implications of local industrial clusters. Eur Plann Stud 14(9):1315–1328

    Article  Google Scholar 

  5. Butler R (1980) The concept of a tourist area cycle of evolution: implications for management of resources. Can Geogr/Le Géogr Can 24(1):5–12

    Article  Google Scholar 

  6. Butler R (ed) (2006) The tourism area life cycle volume 1: applications and modifications. Aspects of tourism. Channel View, Bristol

  7. Coccossis H, Mexa A, Collovini A, Parpairis A, Konstandoglou M, van der Straaten J, van der Borg J, Trumbic I (2001) Defining, measuring and evaluating carrying capacity in European tourism destinations. Technical report, Laboratory of Environmental Planning, The University of Aegean

  8. Cracolici MF, Nijkamp P (2009) The attractiveness and competitiveness of tourist destinations: a study of southern Italian regions. Tour Manag 30(3):336–344

    Article  Google Scholar 

  9. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227

    Article  Google Scholar 

  10. Duarte A, Garcia C, Giannarakis G, Limo S, Polydoropoulou A, Litinas N (2010) New approaches in transportation planning: happiness and transport economics. NETNOMICS Econ Res Electron Netw 11(1):5–32

  11. Dueck G, Scheuer T (1990) Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J Comput Phys 90(1):161–175

    MATH  MathSciNet  Article  ADS  Google Scholar 

  12. Dunn J (1974) Well separated clusters and optimal fuzzy partitions. J Cybern 4:95–104

    MathSciNet  Article  Google Scholar 

  13. Enright MJ (2003) Regional clusters: what we know and what we should know. In: Broecker Johannes, Dohse Dirk, Soltwedel Ruediger (eds) Innovation clusters and interregional competition., Advances in spatial scienceSpringer, Berlin, pp 99–129

    Chapter  Google Scholar 

  14. Gilli M, Maringer D, Schumann E (2011) Numerical methods and optimization in finance. Academic Press, London

    MATH  Google Scholar 

  15. Gilli M, Schumann E (2011) Optimal enough? J Heuristics 17(4):373–387

    Article  Google Scholar 

  16. Gilli M, Winker P (2009) Heuristic optimization methods in econometrics. In: Belsley DA, Kontoghiorghes E (eds) Handbook of computational econometrics. Wiley, New York

  17. Gormsen E (1997) The impact of tourism on coastal areas. GeoJournal 42(1):39–54

    Article  Google Scholar 

  18. Gusfield D (2002) Partition-distance: a problem and class of perfect graphs arising in clustering. Inf Process Lett 82(3):159–164

    MATH  MathSciNet  Article  Google Scholar 

  19. Hawkins DE, Mann S (2007) The world bank’s role in tourism development. Ann Tour Res 34(2):348–363

    Article  Google Scholar 

  20. Hwang YH, Fesenmaier DR (2003) Multidestination pleasure travel patterns: empirical evidence from the American travel survey. J Travel Res 42(2):166–171

    Article  Google Scholar 

  21. ISTAT (1998–2002) Capacità degli esercizi ricettivi e movimento dei clienti negli esercizi ricettivi

  22. ISTAT (2008) Primo Repertorio Statistico dei Comuni della Sicilia. Sistema Statistico Nazionale

  23. Jackson J, Murphy P (2006) Clusters in regional tourism an Australian case. Ann Tour Res 33(4):1018–1035

    Article  Google Scholar 

  24. Jin X, Weber K, Bauer T (2012) Impact of clusters on exhibition destination attractiveness: evidence from mainland China. Tour Manag 33(6):1429–1439

    Article  Google Scholar 

  25. Kim H, Park H (2007) Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12):1495–1502

    CAS  Article  PubMed  Google Scholar 

  26. Leask A (2010) Progress in visitor attraction research: towards more effective management. Tour Manag 31(2):155–166

    Article  Google Scholar 

  27. Lee SH, Choi JY, Yoo SH, Oh YG (2013) Evaluating spatial centrality for integrated tourism management in rural areas using GIS and network analysis. Tour Manag 34:14–24

    Article  Google Scholar 

  28. Macbeth J (2005) Towards an ethics platform for tourism. Ann Tour Res 32(4):962–984

    Article  Google Scholar 

  29. Martello S, Toth P (1990) Knapsack problems: algorithms and computer interpretations. Wiley-Interscience, New York

  30. Middleton V, Hawkins R (1998) Sustainable tourism: a marketing perspective. Butterworth-Heinemann, Oxford

    Google Scholar 

  31. Moscato P, Fontanari JF (1990) Stochastic versus deterministic update in simulated annealing. Phys Lett A 146(4):204–208

    Article  ADS  Google Scholar 

  32. Pearce DG, Tan R, Schott C (2007) Distribution channels in international markets: a comparative analysis of the distribution of New Zealand tourism in Australia, Great Britain and the USA. Curr Issues Tour 10(1):33–60

    Article  Google Scholar 

  33. Pelleg D, Moore A (2000) X-means: extending k-means with efficient estimation of the number of clusters. In: Proceedings of the 17th international conf. on machine learning. Morgan Kaufmann, Kaufmann, pp 727–734

  34. Porter ME (1998) On competition. Harvard Business School Publishing, Boston

    Google Scholar 

  35. Ray S, Turi RH (1999) Determination of number of clusters in k-means clustering and application in colour image segmentation. In: Proceedings of the 4th international conference on advances in pattern recognition and digital techniques, pp 137–143

  36. Regione Siciliana (2010) Criteri e modalità per il riconoscimento dei distretti turistici. Gazzetta Ufficiale della Regione Siciliana

  37. Ritchie JRB, Crouch GI (2003) The competitive destination: a sustainable tourism perspective. CABI Publishing Series. CABI Pub., Cambridge

  38. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    MATH  Article  Google Scholar 

  39. Ryan C (1991) Recreational tourism: a social science perspective. Routledge, London

  40. Ryan (2002). The tourist experience. Continuum, London

  41. Saporta G, Youness G (2002) Comparing two partitions: some proposals and experiments. In: Hrdle W, Rnz B (eds) Compstat. Physica-Verlag, HD, Heidelberg, pp 243–248

  42. Scott N, Baggio R, Cooper C (2008) Network analysis and tourism: from theory to practice. In: Aspects of tourism. Channel View Publications, Bristol

  43. Shih Hsin-Yu (2006) Network characteristics of drive tourism destinations: an application of network analysis in tourism. Tour Manag 27(5):1029–1039

    Article  Google Scholar 

  44. Sim IB (2002) A study on the establishment of tourism zone and development strategic. Korean Acad Soc Cult Tour 4:199–223

    Google Scholar 

  45. Stansfield C (1978) Atlantic city and the resort cycle background to the legalization of gambling. Ann Tour Res 5(2):238–251

    Article  Google Scholar 

  46. Yabuta M, Scott N (2010) A theoretical framework of the dynamic property of the tourism destination network. Technical report, the University of Queensland

  47. Yabuta M, Scott N (2011) Dynamic properties of a tourism destination network. Tour Anal 16(4):493–498

    Article  Google Scholar 

  48. Yang Y (2012) Agglomeration density and tourism development in china: an empirical research based on dynamic panel data model. Tour Manag 33(6):1347–1359

    Article  Google Scholar 

Download references


Authors want to thank Manfred Gilli and Gerda Cabej for insightful comments and remarks on a former draft of the paper.

Author information



Corresponding author

Correspondence to Joseph Andria.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andria, J., di Tollo, G. & Pesenti, R. Detection of local tourism systems by threshold accepting. Comput Manag Sci 12, 559–575 (2015).

Download citation


  • Threshold accepting
  • Clusters
  • Optimisation
  • Local tourism systems