Skip to main content

Advertisement

Log in

BTK Expression Level Prediction and the High-Grade Glioma Prognosis Using Radiomic Machine Learning Models

  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

We aimed to study whether the Bruton’s tyrosine kinase (BTK) expression is correlated with the prognosis of patients with high-grade gliomas (HGGs) and predict its expression level prior to surgery, by constructing radiomic models. Clinical and gene expression data of 310 patients from The Cancer Genome Atlas (TCGA) were included for gene-based prognostic analysis. Among them, contrast-enhanced T1-weighted imaging (T1WI + C) from The Cancer Imaging Archive (TCIA) with genomic data was selected from 82 patients for radiomic models, including support vector machine (SVM) and logistic regression (LR) models. Furthermore, the nomogram incorporating radiomic signatures was constructed to evaluate its clinical efficacy. BTK was identified as an independent risk factor for HGGs through univariate and multivariate Cox regression analyses. Three radiomic features were selected to construct the SVM and LR models, and the validation set showed area under curve (AUCs) values of 0.711 (95% CI, 0.598–0.824) and 0.736 (95% CI, 0.627–0.844), respectively. The median survival times of the high Rad_score and low-Rad_score groups based on LR model were 15.53 and 23.03 months, respectively. In addition, the total risk score of each patient was used to construct a predictive nomogram, and the AUCs calculated from the corresponding time-dependent ROC curves were 0.533, 0.659, and 0.767 for 1, 3, and 5 years, respectively. BTK is an independent risk factor associated with poor prognosis in patients, and the radiomic model constructed in this study can effectively and non-invasively predict preoperative BTK expression levels and patient prognosis based on T1WI + C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The original contributions presented in the study are included in the article/supplementary material; further inquiries can be directed to the corresponding author/s.

Abbreviations

HGG:

High-Grade Glioma

BTK:

Bruton’s Tyrosine Kinase

MRI:

Magnetic Resonance Imaging

TCGA:

The Cancer Genome Atlas

TCIA:

The Cancer Imaging Archive

T1WI + C:

Contrast-Enhanced T1-Weighted Imaging

CGGA:

Chinese Glioma Genome Atlas

OS:

Overall survival

GLRLM:

Gray-Level Run-Length Matrix

GLSZM:

Gray-Level Size Zone Matrix

GLDM :

Gray-Level Dependence Matrix

GLCM:

Gray-Level Co-Occurrence Matrix

NGTDM:

Neighboring Gray Tone Difference Matrix

mRMR:

Maximum Relevance Minimum Redundancy

RFE:

Recursive Feature Elimination

SVM:

Support Vector Machine

LR:

Logistic Regression

ROC:

Receiver Operating Characteristic

AUC:

Area Under the Curve

DCA:

Decision Curve Analysis

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

References

  1. Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15 Suppl 2(Suppl 2):ii1–56. https://doi.org/10.1093/neuonc/not151

  2. Hu LS, Hawkins-Daarud A, Wang L, Li J, Swanson KR. Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett. 2020;477:97-106.https://doi.org/10.1016/j.canlet.2020.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hernández Martínez A, Madurga R, García-Romero N, Ayuso-Sacido Á. Unravelling glioblastoma heterogeneity by means of single-cell RNA sequencing. Cancer Lett. 2022;527:66-79. https://doi.org/10.1016/j.canlet.2021.12.008

    Article  CAS  PubMed  Google Scholar 

  4. Weller M, Wick W, Aldape K, et al. Glioma. Nat Rev Dis Primers. 2015;1:15017.https://doi.org/10.1038/nrdp.2015.17

    Article  PubMed  Google Scholar 

  5. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  6. Bush NAO, Butowski N. The Effect of Molecular Diagnostics on the Treatment of Glioma. Curr Oncol Rep. 2017;19(4):26. https://doi.org/10.1007/s11912-017-0585-6

    Article  CAS  PubMed  Google Scholar 

  7. Ma R, Taphoorn MJB, Plaha P. Advances in the management of glioblastoma. J Neurol Neurosurg Psychiatry. 2021;92(10):1103-1111. https://doi.org/10.1136/jnnp-2020-325334

    Article  PubMed  Google Scholar 

  8. Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol. 2017;14(7):434-452. https://doi.org/10.1038/nrclinonc.2016.204

    Article  CAS  PubMed  Google Scholar 

  9. Qin T, Mullan B, Ravindran R, et al. ATRX loss in glioma results in dysregulation of cell-cycle phase transition and ATM inhibitor radio-sensitization. Cell Rep. 2022;38(2):110216. https://doi.org/10.1016/j.celrep.2021.110216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen HN, Lie A, Li T, et al. Human TERT promoter mutation enables survival advantage from MGMT promoter methylation in IDH1 wild-type primary glioblastoma treated by standard chemoradiotherapy. Neuro Oncol. 2017;19(3):394-404. https://doi.org/10.1093/neuonc/now189

    Article  CAS  PubMed  Google Scholar 

  11. Huang LE. Impact of CDKN2A/B Homozygous Deletion on the Prognosis and Biology of IDH-Mutant Glioma. Biomedicines. 2022;10(2):246. https://doi.org/10.3390/biomedicines10020246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reinhardt A, Stichel D, Schrimpf D, et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 2018;136(2):273-291. https://doi.org/10.1007/s00401-018-1837-8

    Article  CAS  PubMed  Google Scholar 

  13. E CC, J C. Bruton’s tyrosine kinase inhibitors: a promising emerging treatment option for multiple sclerosis. Expert opinion on emerging drugs. 2020;25(4). https://doi.org/10.1080/14728214.2020.1822817

  14. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32-42. https://doi.org/10.1056/NEJMoa1215637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer. 2018;18(3):148-167. https://doi.org/10.1038/nrc.2017.121

    Article  CAS  PubMed  Google Scholar 

  16. Byrd JC, Furman RR, Coutre SE, et al. Ibrutinib Treatment for First-Line and Relapsed/Refractory Chronic Lymphocytic Leukemia: Final Analysis of the Pivotal Phase Ib/II PCYC-1102 Study. Clin Cancer Res. 2020;26(15):3918-3927. https://doi.org/10.1158/1078-0432.CCR-19-2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Butler M, van Ingen Schenau DS, Yu J, et al. BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway. Blood. 2021;138(23):2383-2395. https://doi.org/10.1182/blood.2021011787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tam CS, Anderson MA, Pott C, et al. Ibrutinib plus Venetoclax for the Treatment of Mantle-Cell Lymphoma. N Engl J Med. 2018;378(13):1211-1223. https://doi.org/10.1056/NEJMoa1715519

    Article  CAS  PubMed  Google Scholar 

  19. Lavitrano M, Ianzano L, Bonomo S, et al. BTK inhibitors synergise with 5-FU to treat drug-resistant TP53-null colon cancers. J Pathol. 2020;250(2):134-147. https://doi.org/10.1002/path.5347

    Article  CAS  PubMed  Google Scholar 

  20. Wang JD, Chen XY, Ji KW, Tao F. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth. Am J Transl Res. 2016;8(7):3003-3012.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim JM, Park J, Noh EM, et al. Bruton’s agammaglobulinemia tyrosine kinase (Btk) regulates TPA‑induced breast cancer cell invasion via PLCγ2/PKCβ/NF‑κB/AP‑1‑dependent matrix metalloproteinase‑9 activation. Oncol Rep. 2021;45(5):56. https://doi.org/10.3892/or.2021.8007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yue C, Niu M, Shan QQ, et al. High expression of Bruton’s tyrosine kinase (BTK) is required for EGFR-induced NF-κB activation and predicts poor prognosis in human glioma. J Exp Clin Cancer Res. 2017;36(1):132. https://doi.org/10.1186/s13046-017-0600-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang H, Liu X, Zhu X, et al. CPVL promotes glioma progression via STAT1 pathway inhibition through interactions with the BTK/p300 axis. JCI Insight. 2021;6(24):e146362. https://doi.org/10.1172/jci.insight.146362

    Article  PubMed  PubMed Central  Google Scholar 

  24. Su YK, Bamodu OA, Su IC, et al. Combined Treatment with Acalabrutinib and Rapamycin Inhibits Glioma Stem Cells and Promotes Vascular Normalization by Downregulating BTK/mTOR/VEGF Signaling. Pharmaceuticals (Basel). 2021;14(9):876. https://doi.org/10.3390/ph14090876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rt L, G D, D DR, P L, W van E. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. The British journal of radiology. 2017;90(1070). https://doi.org/10.1259/bjr.20160665

  26. Bai HX, Lee AM, Yang L, et al. Imaging genomics in cancer research: limitations and promises. Br J Radiol. 2016;89(1061):20151030. https://doi.org/10.1259/bjr.20151030

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li Y, Ammari S, Lawrance L, et al. Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion. Cancers (Basel). 2022;14(7):1778. https://doi.org/10.3390/cancers14071778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niu L, Feng WH, Duan CF, Liu YC, Liu JH, Liu XJ. The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas. Biomed Res Int. 2020;2020:4630218. https://doi.org/10.1155/2020/4630218

    Article  PubMed  PubMed Central  Google Scholar 

  29. Y T, W M, Xc W, Gq Y, Rj G, H Z. Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors. European journal of radiology. 2019;120. https://doi.org/10.1016/j.ejrad.2019.07.010

  30. Han W, Qin L, Bay C, et al. Deep Transfer Learning and Radiomics Feature Prediction of Survival of Patients with High-Grade Gliomas. AJNR Am J Neuroradiol. 2020;41(1):40-48. https://doi.org/10.3174/ajnr.A6365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rui W, Ren Y, Wang Y, Gao X, Xu X, Yao Z. MR textural analysis on T2 FLAIR images for the prediction of true oligodendroglioma by the 2016 WHO genetic classification. J Magn Reson Imaging. 2018;48(1):74-83. https://doi.org/10.1002/jmri.25896

    Article  PubMed  Google Scholar 

  32. Liu X, Li Y, Qian Z, et al. A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. NeuroImage: Clinical. 2018;20:1070–1077. https://doi.org/10.1016/j.nicl.2018.10.014

  33. Zhao Z, Zhang KN, Wang Q, et al. Chinese Glioma Genome Atlas (CGGA): A Comprehensive Resource with Functional Genomic Data from Chinese Glioma Patients. Genomics, Proteomics & Bioinformatics. 2021;19(1):1-12. https://doi.org/10.1016/j.gpb.2020.10.005

    Article  CAS  Google Scholar 

  34. Zhang K, Liu X, Li G, et al. Clinical management and survival outcomes of patients with different molecular subtypes of diffuse gliomas in China (2011–2017): a multicenter retrospective study from CGGA. Cancer Biology & Medicine. 2022;19(10):1460-1476. https://doi.org/10.20892/j.issn.2095-3941.2022.0469

    Article  Google Scholar 

  35. Wang Y, Qian T, You G, et al. Localizing seizure-susceptible brain regions associated with low-grade gliomas using voxel-based lesion-symptom mapping. Neuro-Oncology. 2015;17(2):282-288. https://doi.org/10.1093/neuonc/nou130

    Article  PubMed  Google Scholar 

  36. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. J Nucl Med. 2020;61(4):488-495. https://doi.org/10.2967/jnumed.118.222893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lundberg SM, Erion G, Chen H, et al. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat Mach Intell. 2020;2(1):56-67. https://doi.org/10.1038/s42256-019-0138-9

    Article  PubMed  PubMed Central  Google Scholar 

  38. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: ; 2016:770–778. Accessed January 16, 2024. https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

  39. Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis. 2015;115(3):211-252. https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  40. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Published online April 10, 2015. https://doi.org/10.48550/arXiv.1409.1556

  41. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773-782. https://doi.org/10.1038/s41587-019-0114-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392(10145):432-446. https://doi.org/10.1016/S0140-6736(18)30990-5

    Article  PubMed  Google Scholar 

  43. Jp F, Dc A. Current FDA-Approved Therapies for High-Grade Malignant Gliomas. Biomedicines. 2021;9(3). https://doi.org/10.3390/biomedicines9030324

  44. Wang Q, Xiao F, Qi F, Song X, Yu Y. Risk Factors for Cognitive Impairment in High-Grade Glioma Patients Treated with Postoperative Radiochemotherapy. Cancer Res Treat. 2020;52(2):586-593. https://doi.org/10.4143/crt.2019.242

    Article  CAS  PubMed  Google Scholar 

  45. Kudus K, Wagner MW, Namdar K, et al. Increased confidence of radiomics facilitating pretherapeutic differentiation of BRAF-altered pediatric low-grade glioma. Eur Radiol. Published online October 7, 2023. https://doi.org/10.1007/s00330-023-10267-1

  46. Lu J, Xu W, Chen X, Wang T, Li H. Noninvasive prediction of IDH mutation status in gliomas using preoperative multiparametric MRI radiomics nomogram: A mutlicenter study. Magn Reson Imaging. 2023;104:72-79. https://doi.org/10.1016/j.mri.2023.09.001

    Article  CAS  PubMed  Google Scholar 

  47. Wu Z, Yang Y, Zha Y. Radiomics Features on Magnetic Resonance Images Can Predict C5aR1 Expression Levels and Prognosis in High-Grade Glioma. Cancers (Basel). 2023;15(18):4661. https://doi.org/10.3390/cancers15184661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schwartz GK, LoRusso PM, Dickson MA, et al. Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (Schedule 2/1). Br J Cancer. 2011;104(12):1862-1868. https://doi.org/10.1038/bjc.2011.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown JR, Eichhorst B, Hillmen P, et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N Engl J Med. 2023;388(4):319-332. https://doi.org/10.1056/NEJMoa2211582

    Article  CAS  PubMed  Google Scholar 

  50. Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180-1191. https://doi.org/10.1016/S1470-2045(18)30413-3

    Article  CAS  PubMed  Google Scholar 

  51. Guo H, Xie M, Liu W, et al. Inhibition of BTK improved APAP-induced liver injury via suppressing proinflammatory macrophages activation by restoring mitochondrion function. Int Immunopharmacol. 2022;110:109036. https://doi.org/10.1016/j.intimp.2022.109036

    Article  CAS  PubMed  Google Scholar 

  52. Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol. 2012;31(2):119-132. https://doi.org/10.3109/08830185.2012.664797

    Article  CAS  PubMed  Google Scholar 

  53. Shi W, Qu C, Wang X, Liang X, Tan Y, Zhang H. Diffusion kurtosis imaging combined with dynamic susceptibility contrast-enhanced MRI in differentiating high-grade glioma recurrence from pseudoprogression. Eur J Radiol. 2021;144:109941. https://doi.org/10.1016/j.ejrad.2021.109941

    Article  PubMed  Google Scholar 

  54. Shi Z, Jiang J, Xie L, Zhao X. Efficacy evaluation of contrast-enhanced magnetic resonance imaging in differentiating glioma from metastatic tumor of the brain and exploration of its association with patients’ neurological function. Front Behav Neurosci. 2022;16:957795. https://doi.org/10.3389/fnbeh.2022.957795

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen S, Xu Y, Ye M, et al. Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics. J Clin Med. 2022;11(12):3445. https://doi.org/10.3390/jcm11123445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joo L, Park JE, Park SY, et al. Extensive peritumoral edema and brain-to-tumor interface MRI features enable prediction of brain invasion in meningioma: development and validation. Neuro Oncol. 2021;23(2):324-333. https://doi.org/10.1093/neuonc/noaa190

    Article  PubMed  Google Scholar 

  57. Vickers AJ, Woo S. Decision curve analysis in the evaluation of radiology research. Eur Radiol. 2022;32(9):5787-5789. https://doi.org/10.1007/s00330-022-08685-8

    Article  PubMed  Google Scholar 

  58. Sugiura D, Maruhashi T, Okazaki IM, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364(6440):558-566. https://doi.org/10.1126/science.aav7062

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Li Y, Jia L, Kim JK, et al. CD276 expression enables squamous cell carcinoma stem cells to evade immune surveillance. Cell Stem Cell. 2021;28(9):1597-1613.e7. https://doi.org/10.1016/j.stem.2021.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ning Z, Liu K, Xiong H. Roles of BTLA in Immunity and Immune Disorders. Front Immunol. 2021;12:654960. https://doi.org/10.3389/fimmu.2021.654960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This paper was funded by the National Key R&D Program of China, No. 2022YFF0608404.

Author information

Authors and Affiliations

Authors

Contributions

JW, ZDN, and MSC formulated the overall research design and conceived the concept. JCG made significant contributions to data collection and part of data processing. WX and SC completed the majority of data processing. JCG and ZDN drafted the manuscript. All authors made critical revision of the manuscript. All authors contributed equally to this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dainan Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

No animal, human, and potentially identifiable human images or data studies are presented in this manuscript.

Consent for Publication

All authors agreed.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28.5 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Sun, C., Wang, X. et al. BTK Expression Level Prediction and the High-Grade Glioma Prognosis Using Radiomic Machine Learning Models. J Digit Imaging. Inform. med. (2024). https://doi.org/10.1007/s10278-024-01026-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10278-024-01026-9

Keywords

Navigation