Skip to main content

Advertisement

Log in

Systematic Review of Retinal Blood Vessels Segmentation Based on AI-driven Technique

  • Review
  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

Image segmentation is a crucial task in computer vision and image processing, with numerous segmentation algorithms being found in the literature. It has important applications in scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, image compression, among others. In light of this, the widespread popularity of deep learning (DL) and machine learning has inspired the creation of fresh methods for segmenting images using DL and ML models respectively. We offer a thorough analysis of this recent literature, encompassing the range of ground-breaking initiatives in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid-based methods, recurrent networks, visual attention models, and generative models in adversarial settings. We study the connections, benefits, and importance of various DL- and ML-based segmentation models; look at the most popular datasets; and evaluate results in this Literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large. In: Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part II 11, pp. 29–42 (2010). Springer

  2. Otsu, N.: A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics 9(1), 62–66 (1979)

    Article  Google Scholar 

  3. Nock, R., Nielsen, F.: Statistical region merging. IEEE Transactions on pattern analysis and machine intelligence 26(11), 1452–1458 (2004)

    Article  PubMed  Google Scholar 

  4. Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. Procedia Computer Science 54, 764–771 (2015)

    Article  Google Scholar 

  5. Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Processing 38(1), 99–112 (1994)

    Article  Google Scholar 

  6. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International journal of computer vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on pattern analysis and machine intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  8. Plath, N., Toussaint, M., Nakajima, S.: Multi-class image segmentation using conditional random fields and global classification. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 817–824 (2009)

  9. Starck, J.-L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE transactions on image processing 14(10), 1570–1582 (2005)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  10. Minaee, S., Wang, Y.: An admm approach to masked signal decomposition using subspace representation. IEEE Transactions on Image Processing 28(7), 3192–3204 (2019)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  11. Soomro, T.A., Gao, J., Khan, T., Hani, A.F.M., Khan, M.A., Paul, M.: Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: a survey. Pattern Analysis and Applications 20, 927–961 (2017)

    Article  MathSciNet  Google Scholar 

  12. Soomro, S., Akram, F., Kim, J.H., Soomro, T.A., Choi, K.N.: Active contours using additive local and global intensity fitting models for intensity inhomogeneous image segmentation. Computational and mathematical methods in medicine 2016 (2016)

  13. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images–a survey. Computer methods and programs in biomedicine 108(1), 407–433 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. Singh, N.P., Singh, V.P.: Efficient segmentation and registration of retinal image using gumble probability distribution and brisk feature. Traitement du Signal 37(5), 855–864 (2020)

    Article  Google Scholar 

  15. Soomro, S., Akram, F., Munir, A., Lee, C.H., Choi, K.N., et al.: Segmentation of left and right ventricles in cardiac mri using active contours. Computational and mathematical methods in medicine 2017 (2017)

  16. Xu, X., Ding, W., Abràmoff, M.D., Cao, R.: An improved arteriovenous classification method for the early diagnostics of various diseases in retinal image. Computer methods and programs in biomedicine 141, 3–9 (2017)

    Article  PubMed  Google Scholar 

  17. Vujosevic, S., Aldington, S.J., Silva, P., Hernández, C., Scanlon, P., Peto, T., Simó, R.: Screening for diabetic retinopathy: new perspectives and challenges. The Lancet Diabetes & Endocrinology 8(4), 337–347 (2020)

    Article  Google Scholar 

  18. Singh, N.P., Srivastava, R.: Retinal blood vessels segmentation by using gumbel probability distribution function based matched filter. Computer methods and programs in biomedicine 129, 40–50 (2016)

    Article  PubMed  Google Scholar 

  19. Singh, N.P., Srivastava, R.: Weibull probability distribution function-based matched filter approach for retinal blood vessels segmentation. In: Advances in Computational Intelligence: Proceedings of International Conference on Computational Intelligence 2015, pp. 427–437 (2017). Springer

  20. Saroj, S.K., Kumar, R., Singh, N.P.: Frechet pdf based matched filter approach for retinal blood vessels segmentation. Computer methods and programs in biomedicine 194, 105490 (2020)

  21. Susheel Kumar, K., Jatoth, C.S., Singh, N.P.: Segmentation of retinal blood vessel using an algorithm-based gamma distribution of matched filter. In: Proceedings of Integrated Intelligence Enable Networks and Computing: IIENC 2020, pp. 73–81 (2021). Springer

  22. Kumar, K.S., Singh, N.P.: Retinal blood vessel segmentation using a generalized gamma probability distribution function (pdf) of matched filtered. International Journal of Fuzzy System Applications (IJFSA) 11(2), 1–16 (2022)

    Article  Google Scholar 

  23. Kumar, K.S., Singh, N.P.: An efficient registration-based approach for retinal blood vessel segmentation using generalized pareto and fatigue pdf. Medical Engineering & Physics 110, 103936 (2022)

  24. NKCF: How does Human eyes work? https://nkcf.org/about-keratoconus/how-the-human-eye-works (2017-2022)

  25. OPTOMETRY, E..: The Optical Equipment Used During An Eye Examination. https://www.whatlizzyloves.com/2019/07/optical-equipment-eye-examination.html (2019)

  26. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on medical imaging 8(3), 263–269 (1989)

    Article  CAS  PubMed  Google Scholar 

  27. Chutatape, O., Zheng, L., Krishnan, S.M.: Retinal blood vessel detection and tracking by matched gaussian and kalman filters. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No. 98CH36286), vol. 6, pp. 3144–3149 (1998). IEEE

  28. Aswini, S., Suresh, A., Priya, S., Krishna, B.S.: Retinal vessel segmentation using morphological top hat approach on diabetic retinopathy images. In: 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), pp. 1–5 (2018). IEEE

  29. Kaba, D., Salazar-Gonzalez, A.G., Li, Y., Liu, X., Serag, A.: Segmentation of retinal blood vessels using gaussian mixture models and expectation maximisation. In: Health Information Science: Second International Conference, HIS 2013, London, UK, March 25-27, 2013. Proceedings 2, pp. 105–112 (2013). Springer

  30. Salazar-Gonzalez, A., Li, Y., Kaba, D.: Mrf reconstruction of retinal images for the optic disc segmentation. In: Health Information Science: First International Conference, HIS 2012, Beijing, China, April 8-10, 2012. Proceedings 1, pp. 88–99 (2012). Springer

  31. Zunair, H., Hamza, A.B.: Sharp u-net: Depthwise convolutional network for biomedical image segmentation. Computers in Biology and Medicine 136, 104699 (2021)

  32. Guo, J., Ren, S., Shi, Y., Wang, H.: Automatic retinal blood vessel segmentation based on multi-level convolutional neural network. In: 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–5 (2018). IEEE

  33. Kaba, D., Wang, Y., Wang, C., Liu, X., Zhu, H., Salazar-Gonzalez, A., Li, Y.: Retina layer segmentation using kernel graph cuts and continuous max-flow. Optics express 23(6), 7366–7384 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Ndipenoch, N., Miron, A., Wang, Z., Li, Y.: Simultaneous segmentation of layers and fluids in retinal oct images. In: 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–6 (2022). IEEE

  35. Ndipenoch, N., Miron, A., Wang, Z., Li, Y.: Retinal image segmentation with small datasets. arXiv preprint arXiv:2303.05110 (2023)

  36. International, C.C.A.-N...: different cell types in the retina. https://www.researchgate.net/figure/Schematic-of-the-eye-and-retina-structure-The-magnified-area-represents-different-cell_fig2_325521222 (2018)

  37. Vascular, C., Surgery, E.: Microaneurysm. https://www.sciencedirect.com/topics/medicine-and-dentistry/microaneurysm (2010)

  38. Ophthalmology, C.R.: Cotton Wool Spots. https://www.sciencedirect.com/topics/medicine-and-dentistry/cotton-wool-spots (2013)

  39. Medicine, N.L.: National Center of Biotechnoly Infromation. https://www.ncbi.nlm.nih.gov/books/NBK560777/ (2022)

  40. Medicine, N.L.: TYPES OF EXUDATES IN DIABETIC RETINOPATHY. https://pubmed.ncbi.nlm.nih.gov/14058764/ (2000)

  41. Group, A.-R.E.D.S.R., et al: The age-related eye disease study severity scale for age-related macular degeneration: Areds report no. 17. Archives of Ophthalmology 123(11), 1484–1498 (2005)

  42. Dong, L., Yang, Q., Zhang, R.H., Wei, W.B.: Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: A systematic review and meta-analysis. EClinicalMedicine 35, 100875 (2021)

  43. worldwide, T.: Age-related Macular Degeneration. https://www.kubotaholdings.co.jp/en/diseases/wet-amd/index.html (2017)

  44. Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE reviews in biomedical engineering 3, 169–208 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  45. MARIAHERREROT: Kaggle DR dataset (EyePACS). https://www.kaggle.com/datasets/mariaherrerot/eyepacspreprocess/ (2021)

  46. Mind, M.: TYPES OF retinal image database. https://www.medicmind.tech/retinal-image-databases (2018)

  47. Kaggle: RITE-Dataset. https://www.kaggle.com/datasets/priyanagda/ritedataset (2018)

  48. Paperswithcode: ARIA (Automated Retinal Image Analysis (ARIA) Data Set). https://paperswithcode.com/dataset/aria/ (2004-2006)

  49. Kaggle: HRF dataset. https://www.kaggle.com/datasets/lavanya456/hrf-images-for-dr (2022)

  50. Kaggle: DDR dataset. https://www.kaggle.com/datasets/mariaherrerot/ddrdataset (2022)

  51. Simó, A., Ves, E.: Segmentation of macular fluorescein angiographies. a statistical approach. Pattern Recognition 34(4), 795–809 (2001)

  52. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging 23(4), 501–509 (2004)

    Article  PubMed  Google Scholar 

  53. Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Transactions on medical Imaging 25(9), 1214–1222 (2006)

    Article  PubMed  Google Scholar 

  54. Salem, S.A., Salem, N.M., Nandi, A.K.: Segmentation of retinal blood vessels using a novel clustering algorithm (racal) with a partial supervision strategy. Medical & biological engineering & computing 45, 261–273 (2007)

    Article  Google Scholar 

  55. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE transactions on medical imaging 26(10), 1357–1365 (2007)

    Article  PubMed  Google Scholar 

  56. Kande, G.B., Subbaiah, P.V., Savithri, T.S.: Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. Journal of medical systems 34, 849–858 (2010)

    Article  PubMed  Google Scholar 

  57. Xu, L., Luo, S.: A novel method for blood vessel detection from retinal images. Biomedical engineering online 9, 1–10 (2010)

    Article  Google Scholar 

  58. Lupascu, C.A., Tegolo, D., Trucco, E.: Fabc: retinal vessel segmentation using adaboost. IEEE Transactions on Information Technology in Biomedicine 14(5), 1267–1274 (2010)

    Article  PubMed  Google Scholar 

  59. Ng, J., Clay, S., Barman, S.A., Fielder, A., Moseley, M., Parker, K., Paterson, C.: Maximum likelihood estimation of vessel parameters from scale space analysis. Image and Vision Computing 28(1), 55–63 (2010)

    Article  Google Scholar 

  60. You, X., Peng, Q., Yuan, Y., Cheung, Y.-m., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern recognition 44(10-11), 2314–2324 (2011)

    Article  ADS  Google Scholar 

  61. Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Transactions on medical imaging 30(1), 146–158 (2010)

    Article  PubMed  Google Scholar 

  62. Xie, S., Nie, H.: Retinal vascular image segmentation using genetic algorithm plus fcm clustering. In: 2013 Third International Conference on Intelligent System Design and Engineering Applications, pp. 1225–1228 (2013). IEEE

  63. Akhavan, R., Faez, K.: A novel retinal blood vessel segmentation algorithm using fuzzy segmentation. International Journal of Electrical & Computer Engineering (2088-8708) 4(4) (2014)

  64. Emary, E., Zawbaa, H.M., Hassanien, A.E., Schaefer, G., Azar, A.T.: Retinal vessel segmentation based on possibilistic fuzzy c-means clustering optimised with cuckoo search. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 1792–1796 (2014). IEEE

  65. Maji, D., Santara, A., Ghosh, S., Sheet, D., Mitra, P.: Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3029–3032 (2015). IEEE

  66. Gu, L., Cheng, L.: Learning to boost filamentary structure segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 639–647 (2015)

  67. Sharma, S., Wasson, E.V.: Retinal blood vessel segmentation using fuzzy logic. Journal of Network Communications and Emerging Technologies 4(3), 1–5 (2015)

    Google Scholar 

  68. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE transactions on medical imaging 35(11), 2369–2380 (2016)

    Article  PubMed  Google Scholar 

  69. Li, M., Yin, Q., Lu, M.: Retinal blood vessel segmentation based on multi-scale deep learning. In: 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1–7 (2018). IEEE

  70. Memon, Q.A., Hassan, M.E.: Cluster analysis of patients’ clinical information for medical practitioners and insurance companies. International Journal of Online & Biomedical Engineering 16(4) (2020)

  71. Fenner, B.J., Wong, R.L., Lam, W.-C., Tan, G.S., Cheung, G.C.: Advances in retinal imaging and applications in diabetic retinopathy screening: a review. Ophthalmology and therapy 7, 333–346 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  72. Grassmann, F., Mengelkamp, J., Brandl, C., Harsch, S., Zimmermann, M.E., Linkohr, B., Peters, A., Heid, I.M., Palm, C., Weber, B.H.: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 125(9), 1410–1420 (2018)

    Article  PubMed  Google Scholar 

  73. Gulati, S., Singh, V.P., Shukla, S.: Comparative analysis of deep learning approaches for the diagnosis of diabetic retinopathy. In: 2022 IEEE Students Conference on Engineering and Systems (SCES), pp. 1–6 (2022). IEEE

  74. Niemeijer, M., Ginneken, B., Russell, S.R., Suttorp-Schulten, M.S., Abramoff, M.D.: Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Investigative ophthalmology & visual science 48(5), 2260–2267 (2007)

    Article  Google Scholar 

  75. Abràmoff, M.D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J.C., Niemeijer, M.: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative ophthalmology & visual science 57(13), 5200–5206 (2016)

    Article  Google Scholar 

  76. Gargeya, R., Leng, T.: Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7), 962–969 (2017)

    Article  PubMed  Google Scholar 

  77. Takahashi, H., Tampo, H., Arai, Y., Inoue, Y., Kawashima, H.: Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy. PloS one 12(6), 0179790 (2017)

  78. Burlina, P.M., Joshi, N., Pekala, M., Pacheco, K.D., Freund, D.E., Bressler, N.M.: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA ophthalmology 135(11), 1170–1176 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  79. Roy, A.G., Sheet, D.: Dasa: Domain adaptation in stacked autoencoders using systematic dropout. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 735–739 (2015). IEEE

  80. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pp. 140–148 (2016). Springer

  81. Dasgupta, A., Singh, S.: A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 248–251 (2017). IEEE

  82. Shi, C., Liu, J., Chen, D.: A segmentation-oriented inter-class transfer method: Application to retinal vessel segmentation. arXiv preprint arXiv:1906.08501 (2019)

  83. Guo, S., Wang, K., Kang, H., Zhang, Y., Gao, Y., Li, T.: Bts-dsn: Deeply supervised neural network with short connections for retinal vessel segmentation. International journal of medical informatics 126, 105–113 (2019)

    Article  PubMed  Google Scholar 

  84. Adapa, D., Joseph Raj, A.N., Alisetti, S.N., Zhuang, Z., Naik, G.: A supervised blood vessel segmentation technique for digital fundus images using zernike moment based features. Plos one 15(3), 0229831 (2020)

  85. Ghosh, S.K., Ghosh, A.: A novel retinal image segmentation using rsvm boosted convolutional neural network for exudates detection. Biomedical Signal Processing and Control 68, 102785 (2021)

  86. Reddy, Y.M.S., Ravindran, R.E.: WITHDRAWN: Segmentation of retinal vasculature through composite features and supervised learning. Elsevier (2021)

  87. Zhao, R., Chen, Z., Chi, Z.: Convolutional neural networks for branch retinal vein occlusion recognition? In: 2015 IEEE International Conference on Information and Automation, pp. 1633–1636 (2015). IEEE

  88. Berber, P., Grassmann, F., Kiel, C., Weber, B.H.: An eye on age-related macular degeneration: the role of micrornas in disease pathology. Molecular diagnosis & therapy 21, 31–43 (2017)

    Article  CAS  Google Scholar 

  89. Venhuizen, F.G., Ginneken, B., Liefers, B., Asten, F., Schreur, V., Fauser, S., Hoyng, C., Theelen, T., Sánchez, C.I.: Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomedical optics express 9(4), 1545–1569 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  90. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., Kitai, T.: Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology 69(21), 2657–2664 (2017)

    Article  PubMed  Google Scholar 

  91. Garcia, M., Sanchez, C.I., Poza, J., López, M.I., Hornero, R.: Detection of hard exudates in retinal images using a radial basis function classifier. Annals of biomedical engineering 37, 1448–1463 (2009)

    Article  PubMed  Google Scholar 

  92. García, M., López, M.I., Álvarez, D., Hornero, R.: Assessment of four neural network based classifiers to automatically detect red lesions in retinal images. Medical engineering & physics 32(10), 1085–1093 (2010)

    Article  Google Scholar 

  93. Osareh, A., Shadgar, B., Markham, R.: A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Transactions on Information Technology in Biomedicine 13(4), 535–545 (2009)

    Article  PubMed  Google Scholar 

  94. Melinscak, M., Prentasic, P., Loncaric, S.: Retinal vessel segmentation using deep neural networks. In: VISAPP (1), pp. 577–582 (2015)

  95. Wang, S., Yin, Y., Cao, G., Wei, B., Zheng, Y., Yang, G.: Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149, 708–717 (2015)

    Article  Google Scholar 

  96. Fu, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J.: Deepvessel: Retinal vessel segmentation via deep learning and conditional random field. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pp. 132–139 (2016). Springer

  97. Zhu, C., Zou, B., Xiang, Y., Cui, J., Wu, H.: An ensemble retinal vessel segmentation based on supervised learning in fundus images. Chinese Journal of Electronics 25(3), 503–511 (2016)

    Article  Google Scholar 

  98. Mo, J., Zhang, L.: Multi-level deep supervised networks for retinal vessel segmentation. International journal of computer assisted radiology and surgery 12, 2181–2193 (2017)

    Article  PubMed  Google Scholar 

  99. Hajabdollahi, M., Esfandiarpoor, R., Najarian, K., Karimi, N., Samavi, S., Reza-Soroushmeh, S.: Low complexity convolutional neural network for vessel segmentation in portable retinal diagnostic devices. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2785–2789 (2018). IEEE

  100. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955 (2018)

  101. Oliveira, A., Pereira, S., Silva, C.A.: Retinal vessel segmentation based on fully convolutional neural networks. Expert Systems with Applications 112, 229–242 (2018)

    Article  Google Scholar 

  102. Yan, Z., Yang, X., Cheng, K.-T.: A three-stage deep learning model for accurate retinal vessel segmentation. IEEE journal of Biomedical and Health Informatics 23(4), 1427–1436 (2018)

    Article  PubMed  Google Scholar 

  103. Badawi, S.A., Fraz, M.M.: Multiloss function based deep convolutional neural network for segmentation of retinal vasculature into arterioles and venules. BioMed research international 2019 (2019)

  104. Samuel, P.M., Veeramalai, T.: Multilevel and multiscale deep neural network for retinal blood vessel segmentation. Symmetry 11(7), 946 (2019)

    Article  ADS  Google Scholar 

  105. Wang, C., Zhao, Z., Ren, Q., Xu, Y., Yu, Y.: Dense u-net based on patch-based learning for retinal vessel segmentation. Entropy 21(2), 168 (2019)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  106. Shankar, K., Zhang, Y., Liu, Y., Wu, L., Chen, C.-H.: Hyperparameter tuning deep learning for diabetic retinopathy fundus image classification. IEEE Access 8, 118164–118173 (2020)

    Article  Google Scholar 

  107. Agrawal, R., Kulkarni, S., Walambe, R., Deshpande, M., Kotecha, K.: Deep dive in retinal fundus image segmentation using deep learning for retinopathy of prematurity. Multimedia Tools and Applications 81(8), 11441–11460 (2022)

    Article  Google Scholar 

  108. Saranya, P., Prabakaran, S., Kumar, R., Das, E.: Blood vessel segmentation in retinal fundus images for proliferative diabetic retinopathy screening using deep learning. The visual computer, 1–16 (2022)

  109. Zhang, Y., He, M., Chen, Z., Hu, K., Li, X., Gao, X.: Bridge-net: Context-involved u-net with patch-based loss weight mapping for retinal blood vessel segmentation. Expert Systems with Applications 195, 116526 (2022)

  110. Elaouaber, Z., Feroui, A., Lazouni, M., Messadi, M.: Blood vessel segmentation using deep learning architectures for aid diagnosis of diabetic retinopathy. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 11(4), 1463–1477 (2023)

    Google Scholar 

  111. Yang, Y., Wan, W., Huang, S., Zhong, X., Kong, X.: Radcu-net: residual attention and dual-supervision cascaded u-net for retinal blood vessel segmentation. International Journal of Machine Learning and Cybernetics 14(5), 1605–1620 (2023)

    Article  Google Scholar 

  112. Liu, Y., Shen, J., Yang, L., Bian, G., Yu, H.: Resdo-unet: A deep residual network for accurate retinal vessel segmentation from fundus images. Biomedical Signal Processing and Control 79, 104087 (2023)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equal contribution in this article.

Corresponding author

Correspondence to Prem Kumari Verma.

Ethics declarations

Consent to Participate

All the authors involved have agreed to participate in this submitted article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P.K., Kaur, J. Systematic Review of Retinal Blood Vessels Segmentation Based on AI-driven Technique. J Digit Imaging. Inform. med. (2024). https://doi.org/10.1007/s10278-024-01010-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10278-024-01010-3

Keywords

Navigation