Skip to main content
Log in

PET KinetiX—A Software Solution for PET Parametric Imaging at the Whole Field of View Level

  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

Kinetic modeling represents the ultimate foundations of PET quantitative imaging, a unique opportunity to better characterize the diseases or prevent the reduction of drugs development. Primarily designed for research, parametric imaging based on PET kinetic modeling may become a reality in future clinical practice, enhanced by the technical abilities of the latest generation of commercially available PET systems. In the era of precision medicine, such paradigm shift should be promoted, regardless of the PET system. In order to anticipate and stimulate this emerging clinical paradigm shift, we developed a constructor-independent software package, called PET KinetiX, allowing a faster and easier computation of parametric images from any 4D PET DICOM series, at the whole field of view level. The PET KinetiX package is currently a plug-in for Osirix DICOM viewer. The package provides a suite of five PET kinetic models: Patlak, Logan, 1-tissue compartment model, 2-tissue compartment model, and first pass blood flow. After uploading the 4D-PET DICOM series into Osirix, the image processing requires very few steps: the choice of the kinetic model and the definition of an input function. After a 2-min process, the PET parametric and error maps of the chosen model are automatically estimated voxel-wise and written in DICOM format. The software benefits from the graphical user interface of Osirix, making it user-friendly. Compared to PMOD-PKIN (version 4.4) on twelve 18F-FDG PET dynamic datasets, PET KinetiX provided an absolute bias of 0.1% (0.05–0.25) and 5.8% (3.3–12.3) for KiPatlak and Ki2TCM, respectively. Several clinical research illustrative cases acquired on different hybrid PET systems (standard or extended axial fields of view, PET/CT, and PET/MRI), with different acquisition schemes (single-bed single-pass or multi-bed multipass), are also provided. PET KinetiX is a very fast and efficient independent research software that helps molecular imaging users easily and quickly produce 3D PET parametric images from any reconstructed 4D-PET data acquired on standard or large PET systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

The data that support the findings of this study are available from the corresponding author, [F.L.Besson], upon reasonable request.

References

  1. Morris, E.D, Endres, C.J, Schmidt, K.C, Christian, B.T, Muzic JR RF, Fisher RE. Kinetic Modeling in Positron Emission Tomography. Emission Tomography The Fundamentals of PET and SPECT. 2004. p. 499–450.

  2. Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of Tracer Kinetic Analysis in Oncology, Part I: Principles and Overview of Methodology. J Nucl Med. 2022;63:342–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kotasidis FA, Tsoumpas C, Rahmim A. Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clin Transl Imaging. 2014;2:219–37.

    Article  Google Scholar 

  4. Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imaging. 2021;48:21–39.

    Article  PubMed  Google Scholar 

  5. Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of Tracer Kinetic Analysis in Oncology, Part II: Examples and Future Directions. J Nucl Med. 2022;63:514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nadig V, Herrmann K, Mottaghy FM, Schulz V. Hybrid total-body pet scanners—current status and future perspectives. Eur J Nucl Med Mol Imaging. 2022;49:445–59.

    Article  PubMed  Google Scholar 

  8. Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46:501–18.

    Article  PubMed  Google Scholar 

  9. Wang G, Rahmim A, Gunn RN. PET Parametric Imaging: Past, Present, and Future. IEEE Trans Radiat Plasma Med Sci. 2020;4:663–75.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Slart RHJA, Tsoumpas C, Glaudemans AWJM, Noordzij W, Willemsen ATM, Borra RJH, et al. Long axial field of view PET scanners: a road map to implementation and new possibilities. Eur J Nucl Med Mol Imaging. 2021;48:4236–45.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Viswanath V, Chitalia R, Pantel AR, Karp JS, Mankoff DA. Analysis of Four-Dimensional Data for Total Body PET Imaging. PET Clinics. 2021;16:55–64.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Feng T, Zhao Y, Shi H, Li H, Zhang X, Wang G, et al. Total-Body Quantitative Parametric Imaging of Early Kinetics of 18 F-FDG. J Nucl Med. 2021;62:738–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu G, Yu H, Shi D, Hu P, Hu Y, Tan H, et al. Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2022;49:2493–503.

    Article  CAS  PubMed  Google Scholar 

  14. Burger C, Buck A. Requirements and implementation of a flexible kinetic modeling tool. J Nucl Med. 1997;38:1818–23.

    CAS  PubMed  Google Scholar 

  15. Muzic RF, Cornelius S. COMKAT: compartment model kinetic analysis tool. J Nucl Med. 2001;42:636–45.

    CAS  PubMed  Google Scholar 

  16. Boellaard R, Yaqub M, Lubberink M, Lammertsma A. PPET: A software tool for kinetic and parametric analyses of dynamic PET studies. NeuroImage. 2006;31:T62.

    Article  Google Scholar 

  17. Tjerkaski J, Cervenka S, Farde L, Matheson GJ. Kinfitr — an open-source tool for reproducible PET modelling: validation and evaluation of test-retest reliability. EJNMMI Res. 2020;10:77.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jiao J, Heeman F, Dixon R, Wimberley C, Lopes Alves I, Gispert JD, et al. NiftyPAD - Novel Python Package for Quantitative Analysis of Dynamic PET Data. Neuroinform. 2023;21:457–68.

    Article  Google Scholar 

  19. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. J Cereb Blood Flow Metab. 1983;3:1–7.

    Article  CAS  PubMed  Google Scholar 

  20. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7.

    Article  CAS  PubMed  Google Scholar 

  21. Mullani NA, Herbst RS, O’Neil RG, Gould KL, Barron BJ, Abbruzzese JL. Tumor Blood Flow Measured by PET Dynamic Imaging of First-Pass 18 F-FDG Uptake: A Comparison with 15 O-Labeled Water-Measured Blood Flow. J Nucl Med. 2008;49:517–23.

    Article  CAS  PubMed  Google Scholar 

  22. Li EJ, Spencer BA, Schmall JP, Abdelhafez Y, Badawi RD, Wang G, et al. Efficient Delay Correction for Total-Body PET Kinetic Modeling Using Pulse Timing Methods. J Nucl Med. 2022;63:1266–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang G, Nardo L, Parikh M, Abdelhafez YG, Li E, Spencer BA, et al. Total-Body PET Multiparametric Imaging of Cancer Using a Voxelwise Strategy of Compartmental Modeling. J Nucl Med. 2022;63:1274–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to particularly thank Cécile Maréchal (INSMI), Redouane Bouchaala and Nahed Sakly (CNRS innovation, Prématuration), Tamara Silvain and Louis Romand (CNRS innovation, RISE), and Vincent Lebon (BioMAps) for their support and Jane Brégier-John for her help in improving the English of the manuscript.

Funding

This research was funded by the French National Centre for Scientific Research (Programme Prématuration CNRS Innovation, 2022–2023) and supported by Institut National des sciences Mathématiques et de leurs interactions (INSMI) and laboratoire d’imagerie Multimodale Paris Saclay (BIOMAPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent L. Besson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besson, F.L., Faure, S. PET KinetiX—A Software Solution for PET Parametric Imaging at the Whole Field of View Level. J Digit Imaging. Inform. med. 37, 842–850 (2024). https://doi.org/10.1007/s10278-023-00965-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00965-z

Keywords

Navigation