Skip to main content
Log in

MRI-based Machine Learning Radiomics Can Predict CSF1R Expression Level and Prognosis in High-grade Gliomas

  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study is to predict the mRNA expression of CSF1R in HGG non-invasively using MRI (magnetic resonance imaging) omics technology and to evaluate the correlation between the established radiomics model and prognosis. We investigated the predictive value of CSF1R in the Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) database. The Support vector machine (SVM) and the Logistic regression (LR) algorithms were used to create a radiomics_score (Rad_score), respectively. The effectiveness and performance of the radiomics model was assessed in the training (n = 89) and tenfold cross-validation sets. We further analyzed the correlation between Rad_score and macrophage-related genes using Spearman correlation analysis. A radiomics nomogram combining the clinical factors and Rad_score was constructed to validate the radiomic signatures for individualized survival estimation and risk stratification. The results showed that CSF1R expression was markedly elevated in HGG tissues, which was related to worse prognosis. CSF1R expression was closely related to the abundance of infiltrating immune cells, such as macrophages. We identified nine features for establishing a radiomics model. The radiomics model predicting CSF1R achieved high AUC in training (0.768 in SVM and 0.792 in LR) and tenfold cross-validation sets (0.706 in SVM and 0.717 in LR). Rad_score was highly associated with tumor-related macrophage genes. A radiomics nomogram combining the Rad_score and clinical factors was constructed and revealed satisfactory performance. MRI-based Rad_score is a novel way to predict CSF1R expression and prognosis in high-grade glioma patients. The radiomics nomogram could optimize individualized survival estimation for HGG patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

If the requirement is reasonable, any original data of this study can be obtained from the author.

References

  1. Sung H, et al.: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians 71:209–249, 2021

  2. Gupta A, Dwivedi T: A Simplified Overview of World Health Organization Classification Update of Central Nervous System Tumors 2016. Journal of neurosciences in rural practice 8:629-641, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  3. Larsen J, et al.: 'Low grade glioma': an update for radiologists. The British journal of radiology 90:20160600, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brat DJ, et al.: Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. The New England journal of medicine 372:2481-2498, 2015

    Article  CAS  PubMed  Google Scholar 

  5. Omuro A, DeAngelis LM: Glioblastoma and other malignant gliomas: a clinical review. Jama 310:1842-1850, 2013

    Article  CAS  PubMed  Google Scholar 

  6. Louis DN, et al.: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica 131:803-820, 2016

    Article  PubMed  Google Scholar 

  7. Ostrom QT, et al.: CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-oncology 19:v1-v88, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aum DJ, Kim DH, Beaumont TL, Leuthardt EC, Dunn GP, Kim AH: Molecular and cellular heterogeneity: the hallmark of glioblastoma. Neurosurgical focus 37:E11, 2014

    Article  PubMed  Google Scholar 

  9. Hume DA: The mononuclear phagocyte system. Current opinion in immunology 18:49-53, 2006

    Article  CAS  PubMed  Google Scholar 

  10. Chitu V, Biundo F, Stanley ER: Colony stimulating factors in the nervous system. Seminars in immunology 54:101511, 2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiehagen KR, et al.: Combination of CD40 Agonism and CSF-1R Blockade Reconditions Tumor-Associated Macrophages and Drives Potent Antitumor Immunity. Cancer immunology research 5:1109-1121, 2017

    Article  CAS  PubMed  Google Scholar 

  12. Quail DF, et al.: The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352:aad3018, 2016

  13. Butowski N, et al.: Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-oncology 18:557-564, 2016

    Article  PubMed  Google Scholar 

  14. Patwardhan PP, et al.: Sustained inhibition of receptor tyrosine kinases and macrophage depletion by PLX3397 and rapamycin as a potential new approach for the treatment of MPNSTs. Clinical cancer research : an official journal of the American Association for Cancer Research 20:3146-3158, 2014

    Article  CAS  PubMed  Google Scholar 

  15. Pyonteck SM, et al.: CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature medicine 19:1264-1272, 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zonari P, Baraldi P, Crisi G: Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 49:795-803, 2007

    Article  PubMed  Google Scholar 

  17. Lu CF, et al.: Machine Learning-Based Radiomics for Molecular Subtyping of Gliomas. Clinical cancer research : an official journal of the American Association for Cancer Research 24:4429-4436, 2018

    Article  PubMed  Google Scholar 

  18. Zhou H, et al.: MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro-oncology 19:862-870, 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Artzi M, Bressler I, Ben Bashat D: Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. Journal of magnetic resonance imaging : JMRI 50:519-528, 2019

    Article  PubMed  Google Scholar 

  20. Lambin P, et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nature reviews Clinical oncology 14:749-762, 2017

    Article  PubMed  Google Scholar 

  21. Leu K, et al.: Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II-III diffuse gliomas. Journal of neuro-oncology 134:177-188, 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reza SMS, Samad MD, Shboul ZA, Jones KA, Iftekharuddin KM: Glioma grading using structural magnetic resonance imaging and molecular data. Journal of medical imaging (Bellingham, Wash) 6:024501, 2019

  23. Zeng WJ, et al.: Integrative Analysis of DNA Methylation and Gene Expression Identify a Three-Gene Signature for Predicting Prognosis in Lower-Grade Gliomas. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 47:428-439, 2018

    Article  CAS  PubMed  Google Scholar 

  24. Beig N, et al.: Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 26:1866-1876, 2020

    Article  CAS  PubMed  Google Scholar 

  25. Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R: Radiogenomics: bridging imaging and genomics. Abdominal radiology (New York) 44:1960-1984, 2019

    Article  PubMed  Google Scholar 

  26. Cohen AL, Holmen SL, Colman H: IDH1 and IDH2 mutations in gliomas. Current neurology and neuroscience reports 13:345, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  27. Boots-Sprenger SH, et al.: Significance of complete 1p/19q co-deletion, IDH1 mutation and MGMT promoter methylation in gliomas: use with caution. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 26:922–929, 2013

  28. Vivian J, et al.: Toil enables reproducible, open source, big biomedical data analyses. Nature biotechnology 35:314-316, 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim JY, et al.: Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro-oncology 21:404-414, 2019

    Article  PubMed  Google Scholar 

  30. Hong JH, et al.: Development and Validation of a Radiomics Model for Differentiating Bone Islands and Osteoblastic Bone Metastases at Abdominal CT. Radiology 299:626-632, 2021

    Article  PubMed  Google Scholar 

  31. Yu Y, et al.: Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer. JAMA network open 3:e2028086, 2020

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lv L, et al.: Radiomic analysis for predicting prognosis of colorectal cancer from preoperative (18)F-FDG PET/CT. J Transl Med 20:66, 2022

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fang Q, Chen H: The significance of m6A RNA methylation regulators in predicting the prognosis and clinical course of HBV-related hepatocellular carcinoma. Molecular medicine (Cambridge, Mass) 26:60, 2020

  34. McKenney AS, et al.: Radiomic Analysis to Predict Histopathologically Confirmed Pseudoprogression in Glioblastoma Patients. Advances in Radiation Oncology:100916, 2022

  35. Patel M, et al.: Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma. Clinical Radiology 76:628.e617-628.e627, 2021

    Article  Google Scholar 

  36. Saltybaeva N, et al.: Robustness of radiomic features in magnetic resonance imaging for patients with glioblastoma: Multi-center study. Physics and Imaging in Radiation Oncology 22:131-136, 2022

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu Y, He X, Li Y, Pang P, Shu Z, Gong X: The Nomogram of MRI-based Radiomics with Complementary Visual Features by Machine Learning Improves Stratification of Glioblastoma Patients: A Multicenter Study. J Magn Reson Imaging 54:571-583, 2021

    Article  PubMed  Google Scholar 

  38. Eckel-Passow JE, et al.: Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. The New England journal of medicine 372:2499-2508, 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel SH, et al.: T2-FLAIR Mismatch, an Imaging Biomarker for IDH and 1p/19q Status in Lower-grade Gliomas: A TCGA/TCIA Project. Clinical cancer research : an official journal of the American Association for Cancer Research 23:6078-6085, 2017

    Article  CAS  PubMed  Google Scholar 

  40. Su X, et al.: A radiomics-clinical nomogram for preoperative prediction of IDH1 mutation in primary glioblastoma multiforme. Clin Radiol 75:963.e967-963.e915, 2020

    Article  Google Scholar 

  41. Prestwich RJ, Sivapalasunrtharam A, Johnston C, Evans K, Gerrard GE: Survival in high-grade glioma: a study of survival in patients unfit for or declining radiotherapy. Clinical oncology (Royal College of Radiologists (Great Britain)) 17:133–137, 2005

  42. Akkari L, et al.: Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med 12, 2020

  43. Almahariq MF, Quinn TJ, Kesarwani P, Kant S, Miller CR, Chinnaiyan P: Inhibition of Colony-Stimulating Factor-1 Receptor Enhances the Efficacy of Radiotherapy and Reduces Immune Suppression in Glioblastoma. In vivo (Athens, Greece) 35:119-129, 2021

    CAS  PubMed  Google Scholar 

  44. Domingues P, et al.: Tumor infiltrating immune cells in gliomas and meningiomas. Brain, behavior, and immunity 53:1-15, 2016

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  45. Gajewski TF, Schreiber H, Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nature immunology 14:1014-1022, 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mao X, et al.: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 20:131, 2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L: Macrophages and Metabolism in the Tumor Microenvironment. Cell metabolism 30:36-50, 2019

    Article  CAS  PubMed  Google Scholar 

  48. Chanmee T, Ontong P, Konno K, Itano N: Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6:1670-1690, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  49. Perreault S, et al.: A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer 19:1250, 2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. He L, Zhou H, Zeng Z, Yao H, Jiang W, Qu H: Wnt/β-catenin signaling cascade: A promising target for glioma therapy. Journal of cellular physiology 234:2217-2228, 2019

    Article  CAS  PubMed  Google Scholar 

  51. Le Rhun E, et al.: Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896, 2019

    Article  PubMed  Google Scholar 

  52. Fathi Kazerooni A, et al.: Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine. Cancers 13, 2021

  53. Gillies RJ, Schabath MB: Radiomics Improves Cancer Screening and Early Detection. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 29:2556-2567, 2020

    Article  CAS  Google Scholar 

  54. Lu J, Li X, Li H: A radiomics feature-based nomogram to predict telomerase reverse transcriptase promoter mutation status and the prognosis of lower-grade gliomas. Clin Radiol, 2022

  55. Xi YB, et al.: Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. Journal of magnetic resonance imaging : JMRI 47:1380-1387, 2018

    Article  PubMed  Google Scholar 

  56. Wang Y, Shao Q, Luo S, Fu R: Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas. Mathematical biosciences and engineering : MBE 18:8084-8095, 2021

    Article  PubMed  Google Scholar 

  57. Ding J, et al.: Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study. Quantitative imaging in medicine and surgery 12:1517-1528, 2022

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jeannin P, Paolini L, Adam C, Delneste Y: The roles of CSFs on the functional polarization of tumor-associated macrophages. The FEBS journal 285:680-699, 2018

    Article  CAS  PubMed  Google Scholar 

  59. Lei F, Cui N, Zhou C, Chodosh J, Vavvas DG, Paschalis EI: CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages. Proc Natl Acad Sci U S A 117:23336-23338, 2020

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Collins GS, Reitsma JB, Altman DG, Moons KG: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Bmj 350:g7594, 2015

    Article  PubMed  Google Scholar 

  61. Patil N, et al.: Independently validated sex-specific nomograms for predicting survival in patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. Journal of neuro-oncology 155:363-372, 2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tian H, Wu H, Wu G, Xu G: Noninvasive Prediction of TERT Promoter Mutations in High-Grade Glioma by Radiomics Analysis Based on Multiparameter MRI. BioMed research international 2020:3872314, 2020

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tan Y, Mu W, Wang XC, Yang GQ, Gillies RJ, Zhang H: Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors. European journal of radiology 120:108609, 2019

    Article  PubMed  Google Scholar 

  64. Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD: Tumor-Treating Fields: A Fourth Modality in Cancer Treatment. Clinical cancer research : an official journal of the American Association for Cancer Research 24:266-275, 2018

    Article  CAS  PubMed  Google Scholar 

  65. Kirson ED, et al.: Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proceedings of the National Academy of Sciences of the United States of America 104:10152-10157, 2007

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stupp R, et al.: Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. Jama 314:2535-2543, 2015

    Article  CAS  PubMed  Google Scholar 

  67. Ghiaseddin AP, Shin D, Melnick K, Tran DD: Tumor Treating Fields in the Management of Patients with Malignant Gliomas. Current treatment options in oncology 21:76, 2020

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guo X, et al.: Tumor-Treating Fields in Glioblastomas: Past, Present, and Future. Cancers 14, 2022

Download references

Acknowledgements

We thank Dr. Di Zhou for providing financial support.

Funding

This study was supported by the National Natural Science Foundation of China (No.82002538 and No. 82372502). Science and Technology Commission of Shanghai Municipality-Medical Innovation Research Special Project (23Y11902300); Zhongshan Hospital Clinical Research Special Funding (ZSLCYJ202346); Natural Science Foundation of Shanghai Municipal Commission of Science and Technology (No. 23ZR1411400).

Author information

Authors and Affiliations

Authors

Contributions

M.L.W. designed the study; M.L.W., Y.L.L, Y.Y.W. and X.Y.C. performed the research; M.L.W., Y.L.L. and Y.Y.W analyzed the data; M.L.W., Y.L.L. wrote the paper. M.L.W., G.X.Z. and W.C.G revised the paper.

Corresponding authors

Correspondence to Wenchao Gu, Guoxia Zhou or Meilin Weng.

Ethics declarations

Ethics Approval

This is an observational study. The Zhongshan hospital Research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors claim that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Y., Wu, Y., Chen, X. et al. MRI-based Machine Learning Radiomics Can Predict CSF1R Expression Level and Prognosis in High-grade Gliomas. J Digit Imaging. Inform. med. 37, 209–229 (2024). https://doi.org/10.1007/s10278-023-00905-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00905-x

Keywords

Navigation