Skip to main content

Advertisement

Log in

Definition of the Region of Interest for the Assessment of Alveolar Bone Repair Using Micro-computed Tomography

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the influence of the extraction socket (distal or lingual root) and the type of region of interest (ROI) definition (manual or predefined) on the assessment of alveolar repair following tooth extraction using micro-computed tomography (micro-CT). The software package used for scanning, reconstruction, reorientation, and analysis of images (NRecon®, DataViewer®, CT-Analyzer®) was acquired through Bruker < https://www.bruker.com > . The sample comprised the micro-CT volumes of seven Wistar rat mandibles, in which the right first molar was extracted. The reconstructed images were analyzed using the extraction sockets, i.e., the distal and intermediate lingual root and the method of ROI definition: manual (MA), central round (CR), and peripheral round (PR). The bone volume fraction (BV/TV) values obtained were analyzed by two-way ANOVA with Tukey’s post hoc test (α = 5%). The distal extraction socket resulted in significantly lower BV/TV values than the intermediate lingual socket for MA (P = 0.001), CR (P < 0.001), and PR (P < 0.001). Regarding the ROI, when evaluating the distal extraction socket, the BV/TV was significantly higher (P < 0.001) for MA than for CR and PR, with a lower BV/TV for CR. However, no significant difference was observed for MA (P = 0.855), CR (P = 0.769), or PR (P = 0.453) in the intermediate lingual extraction socket. The bone neoformation outcome (BV/TV) for alveolar bone repair after tooth extraction is significantly influenced by the ROI and the extraction socket. Using the predefined method with a standardized ROI in the central region of the distal extraction socket resulted in the assessment of bone volume, demonstrating the most critical region of the bone neoformation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Material

Data will be made available upon request to authors.

Code Availability

Not applicable.

References

  1. Javed A, Chen H, Ghori FY: Genetic and transcriptional control of bone formation. Oral Maxillofac Surg Clin North Am 22(3): 283-293, 2010. https://doi.org/10.1016/j.coms.2010.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pagni G, Pellegrini G, Giannobile WV, Rasperini G: Postextraction alveolar ridge preservation: biological basis and treatments. Int J Dent 2012: 151030, 2012. https://doi.org/10.1155/2012/151030.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Haworth S, Shungin D, Kwak SY, Kim HY, West NX, Thomas SJ, Franks PW, Timpson NJ, Shin MJ, Johansson I: Tooth loss is a complex measure of oral disease: Determinants and methodological considerations. Community Dent Oral Epidemiol 46(6): 555-562, 2018. https://doi.org/10.1111/cdoe.12391.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Calixto RF, Teófilo JM, Brentegani LG, Lamano-Carvalho TL: Grafting of tooth extraction socket with inorganic bovine bone or bioactive glass particles: comparative histometric study in rats. Implant Dent 16(3): 260-269, 2007. https://doi.org/10.1097/ID.0b013e3180500b95.

    Article  PubMed  Google Scholar 

  5. Lin Z, Rios HF, Volk SL, Sugai JV, Jin Q, Giannobile WV: Gene expression dynamics during bone healing and osseointegration. J Periodontol 82(7): 1007-1017, 2011. https://doi.org/10.1902/jop.2010.100577.

    Article  PubMed  Google Scholar 

  6. Hassumi JS, Mulinari-Santos G, Fabris ALDS, Jacob RGM, Gonçalves A, Rossi AC, Freire AR, Faverani LP, Okamoto R: Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis. J Appl Oral Sci 18; 26:e20170326, 2018. https://doi.org/10.1590/1678-7757-2017-0326.

  7. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25: 1468-1486, 2010.

    Article  PubMed  Google Scholar 

  8. Kruse C, Spin-Neto R, Reibel J, Wenzel A, Kirkevang LL: Diagnostic validity of periapical radiography and CBCT for assessing periapical lesions that persist after endodontic surgery. Dentomaxillofac Radiol 46(7): 20170210, 2017. https://doi.org/10.1259/dmfr.20170210.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Irie MS, Rabelo GD, Spin-Neto R, Dechichi P, Borges JS, Soares PBF: Use of micro-computed tomography for bone evaluation in dentistry. Braz Dent J 29(3): 227-238, 2018. https://doi.org/10.1590/0103-6440201801979.

    Article  PubMed  Google Scholar 

  10. Van 't Hof RJ, Dall'Ara E: Analysis of bone architecture in rodents using micro-computed tomography. Methods Mol Biol 1914: 507-531, 2019. https://doi.org/10.1007/978-1-4939-8997-3_28.

    Article  CAS  Google Scholar 

  11. Gaêta-Araujo H, Nascimento EHL, Brasil DM, Madlum DV, Haiter-Neto F, Oliveira-Santos C: Influence of reconstruction parameters of micro-computed tomography on the analysis of bone mineral density. Imaging Sci Dent 50(2): 153-159, 2020. https://doi.org/10.5624/isd.2020.50.2.153.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chavez MB, Chu EY, Kram V, de Castro LF, Somerman MJ, Foster BL: Guidelines for micro-computed tomography analysis of rodent dentoalveolar tissues. JBMR Plus 5(3): e10474, 2021. https://doi.org/10.1002/jbm4.10474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mashiatulla M, Ross RD, Sumner DR: Validation of cortical bone mineral density distribution using micro-computed tomography. Bone 99: 53-61, 2017. https://doi.org/10.1016/j.bone.2017.03.049.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Suttapreyasri S, Suapear P, Leepong N: The accuracy of cone-beam computed tomography for evaluating bone density and cortical bone thickness at the implant site: Micro-computed tomography and histologic analysis. J Craniofac Surg 29(8): 2026-2031, 2018. https://doi.org/10.1097/SCS.0000000000004672.

    Article  PubMed  Google Scholar 

  15. Chen CH, Wang L, Serdar Tulu U, Arioka M, Moghim MM, Salmon B, Chen CT, Hoffmann W, Gilgenbach J, Brunski JB, Helms JA: An osteopenic/osteoporotic phenotype delays alveolar bone repair. Bone 112: 212-219, 2018. https://doi.org/10.1016/j.bone.2018.04.019.

    Article  PubMed  Google Scholar 

  16. de Oliveira Puttini I, Gomes-Ferreira PHDS, de Oliveira D, Hassumi JS, Gonçalves PZ, Okamoto R: Teriparatide improves alveolar bone modelling after tooth extraction in orchiectomized rats. Arch Oral Biol 102: 147-154, 2019. https://doi.org/10.1016/j.archoralbio.2019.04.007.

    Article  CAS  PubMed  Google Scholar 

  17. Só BB, Silveira FM, Llantada GS, Jardim LC, Calcagnotto T, Martins MAT, Martins MD: Effects of osteoporosis on alveolar bone repair after tooth extraction: A systematic review of preclinical studies. Arch Oral Biol 125: 105054, 2021. https://doi.org/10.1016/j.archoralbio.2021.105054.

    Article  PubMed  Google Scholar 

  18. Christiansen BA: Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice. Bone Rep 5: 136-140, 2016. https://doi.org/10.1016/j.bonr.2016.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Djomehri SI, Candell S, Case T, Browning A, Marshall GW, Yun W, Lau SH, Webb S, Ho SP: Mineral density volume gradients in normal and diseased human tissues. PLoS One 10(4): e0121611, 2015. https://doi.org/10.1371/journal.pone.0121611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kalatzis-Sousa NG, Spin-Neto R, Wenzel A, Tanomaru-Filho M, Faria G: Use of micro-computed tomography for the assessment of periapical lesions in small rodents: a systematic review. Int Endod J 50(4): 352-366, 2017. https://doi.org/10.1111/iej.12633.

    Article  CAS  PubMed  Google Scholar 

  21. Yamasaki MC, Nejaim Y, Roque-Torres GD, Freitas DQ: Meloxicam as a radiation-protective agent on mandibles of irradiated rats. Braz Dent J 28(2): 249-255, 2017. https://doi.org/10.1590/0103-6440201701271.

    Article  PubMed  Google Scholar 

  22. Yang S, Zhu L, Xiao L, Shen Y, Wang L, Peng B, Haapasalo M: Imbalance of interleukin-17+ T-cell and Foxp3+ regulatory T-cell dynamics in rat periapical lesions. J Endod 40(1): 56-62, 2014. https://doi.org/10.1016/j.joen.2013.09.033.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Guo Y, Li J, Chen YY, Liu Q, Tan L, Gao ZR, Zhang SH, Zhou YH, Feng YZ: Endoplasmic reticulum stress remodels alveolar bone formation after tooth extraction. J Cell Mol Med 24(21): 12411-12420, 2020. https://doi.org/10.1111/jcmm.15753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chatterjee M, Faot F, Correa C, Duyck J, Naert I, Vandamme K: A robust methodology for the quantitative assessment of the rat jawbone microstructure. Int J Oral Sci 9(2): 87-94, 2017. https://doi.org/10.1038/ijos.2017.11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang JY, Huo L, Yu RQ, Rao NJ, Lu WW, Zheng LW: Skeletal site-specific response of jawbones and long bones to surgical interventions in rats treated with zoledronic acid. Biomed Res Int 2019: 5138175, 2019. https://doi.org/10.1155/2019/5138175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruker-MicroCT. Bruker Micro - CT Academy Bruker Micro-CT Academy. Bruker Micro-CT Acad 2:1–2, 2015.

  27. Otsu, N: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern 9(1): 62– 66, 1979. https://doi.org/10.1109/TSMC.1979.4310076.

    Article  Google Scholar 

  28. Queiroz PM, Rovaris K, Santaella GM, Haiter-Neto F, Freitas DQ: Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study. J Appl Oral Sci 25(6):674-79, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  29. van Vlijmen OJ, Rangel FA, Bergé SJ, Bronkhorst EM, Becking AG, Kuijpers-Jagtman AM: Measurements on 3D models of human skulls derived from two different cone beam CT scanners. Clin Oral Investig 15(5): 721-727, 2011. https://doi.org/10.1007/s00784-010-0440-8.

    Article  PubMed  Google Scholar 

  30. Ribeiro LL, Bosco AF, Nagata MJ, de Melo LG: Influence of bioactive glass and/or acellular dermal matrix on bone healing of surgically created defects in rat tibiae: a histological and histometric study. Int J Oral Maxillofac Implants 23(5): 811-817, 2008.

    PubMed  Google Scholar 

  31. Truedsson A, Wang JS, Lindberg P, Gordh M, Sunzel B, Warfvinge G: Bone substitute as an on-lay graft on rat tibia. Clin Oral Implants Res 21(4): 424-429, 2010. https://doi.org/10.1111/j.1600-0501.2009.01875.x.

    Article  CAS  PubMed  Google Scholar 

  32. Dias PC, Limirio PHJO, Linhares CRB, Bergamini ML, Rocha FS, Morais RB, Balbi APC, Hiraki KRN, Dechichi P: Hyperbaric Oxygen therapy effects on bone regeneration in Type 1 diabetes mellitus in rats. Connect Tissue Res 59(6): 574-580, 2018. https://doi.org/10.1080/03008207.2018.1434166.

    Article  CAS  PubMed  Google Scholar 

  33. Mendes EM, Irie MS, Rabelo GD, Borges JS, Dechichi P, Diniz RS, Soares PBF: Effects of ionizing radiation on woven bone: influence on the osteocyte lacunar network, collagen maturation, and microarchitecture. Clin Oral Investig 24(8): 2763-2771, 2020. https://doi.org/10.1007/s00784-019-03138-x.

    Article  PubMed  Google Scholar 

  34. Arioka M, Zhang X, Li Z, Tulu US, Liu Y, Wang L, Yuan X, Helms JA. Osteoporotic changes in the periodontium impair alveolar bone healing. J Dent Res 98(4): 450-458, 2019. https://doi.org/10.1177/0022034518818456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miranda TS, Napimoga MH, De Franco L, Marins LM, Malta FS, Pontes LA, Morelli FM, Duarte PM: Strontium ranelate improves alveolar bone healing in estrogen-deficient rats. J Periodontol 91(11): 1465-1474, 2020. https://doi.org/10.1002/JPER.19-0561.

    Article  CAS  PubMed  Google Scholar 

  36. Vieira AE, Repeke CE, Ferreira Junior Sde B, Colavite PM, Biguetti CC, Oliveira RC, Assis GF, Taga R, Trombone AP, Garlet GP: Intramembranous bone healing process subsequent to tooth extraction in mice: micro-computed tomography, histomorphometric and molecular characterization. PLoS One 10(5): e0128021, 2015. https://doi.org/10.1371/journal.pone.0128021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lazenby RA, Skinner MM, Kivell TL, Hublin JJ: Scaling VOI size in 3D μCT studies of trabecular bone: a test of the over-sampling hypothesis. Am J Phys Anthropol 144(2): 196-203, 2011. https://doi.org/10.1002/ajpa.21385.

    Article  PubMed  Google Scholar 

  38. Whitehouse WJ, Dyson ED: Scanning electron microscope studies of trabecular bone in the proximal end of the human femur. J Anat 118(Pt 3): 417-444, 1974.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Scala A, Lang NP, Schweikert MT, de Oliveira JA, Rangel-Garcia I Jr, Botticelli D: Sequential healing of open extraction sockets. An experimental study in monkeys. Clin Oral Implants Res 25(3): 288–295, 2014. https://doi.org/10.1111/clr.12148.

  40. Einhorn TA, Gerstenfeld LC: Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11(1): 45-54, 2015. https://doi.org/10.1038/nrrheum.2014.164.

    Article  PubMed  Google Scholar 

  41. Zhang H, Chavez MB, Kolli TN, Tan MH, Fong H, Chu EY, Li Y, Ren X, Watanabe K, Kim DG, Foster BL: Dentoalveolar defects in the hyp mouse model of x-linked hypophosphatemia. J Dent Res (4):419-428, 2020. https://doi.org/10.1177/0022034520901719.

    Article  CAS  Google Scholar 

  42. Marmary Y, Brayer L, Tzukert A, Feller L: Alveolar bone repair following extraction of impacted mandibular third molars. Oral Surg Oral Med Oral Pathol 61(4): 324-326, 1986. https://doi.org/10.1016/0030-4220(86)90409-3.

    Article  CAS  PubMed  Google Scholar 

  43. Van der Weijden F, Dell'Acqua F, Slot DE: Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol 36(12): 1048-1058, 2009. https://doi.org/10.1111/j.1600-051X.2009.01482.x.

    Article  PubMed  Google Scholar 

  44. Bernabé PF, Melo LG, Cintra LT, Gomes-Filho JE, Dezan E Jr, Nagata MJ: Bone healing in critical-size defects treated with either bone graft, membrane, or a combination of both materials: a histological and histometric study in rat tibiae. Clin Oral Implants Res 23(3): 384-388, 2012. https://doi.org/10.1111/j.1600-0501.2011.02166.x.

    Article  PubMed  Google Scholar 

  45. de Freitas Silva L, de Carvalho Reis ENR, Barbara TA, Bonardi JP, Garcia IR Junior, de Carvalho PSP, Ponzoni D: Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP). Acta Histochem 119(6): 624-631, 2017. https://doi.org/10.1016/j.acthis.2017.07.003.

    Article  CAS  Google Scholar 

  46. Soares PBF, Soares CJ, Limirio PHJO, Lara VC, Moura CCG, Zanetta-Barbosa D: Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant. J Appl Oral Sci 28: e20200191, 2020. https://doi.org/10.1590/1678-7757-2020-0191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmitz JP, Hollinger JO: The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res (205):299-308, 1986.

    Article  Google Scholar 

  48. Chin VK, Shinagawa A, Naclério-Homem Mda G: Bone healing of mandibular critical-size defects in spontaneously hypertensive rats. Braz Oral Res 27(5):423-430, 2013. https://doi.org/10.1590/S1806-83242013000500006.

    Article  PubMed  Google Scholar 

  49. Retzepi M, Donos N: Guided Bone Regeneration: biological principle and therapeutic applications. Clin Oral Implants Res 21(6):567-576, 2010. https://doi.org/10.1111/j.1600-0501.2010.01922.x.

    Article  PubMed  Google Scholar 

  50. Luvizuto ER, Dias SM, Queiroz TP, Okamoto T, Garcia IR Jr, Okamoto R, Dornelles RC: Osteocalcin immunolabeling during the alveolar healing process in ovariectomized rats treated with estrogen or raloxifene. Bone 46(4): 1021-1029, 2010. https://doi.org/10.1016/j.bone.2009.12.016.

    Article  CAS  PubMed  Google Scholar 

  51. Luvizuto ER, Queiroz TP, Dias SM, Okamoto T, Dornelles RC, Garcia IR Jr, Okamoto R: Histomorphometric analysis and immunolocalization of RANKL and OPG during the alveolar healing process in female ovariectomized rats treated with oestrogen or raloxifene. Arch Oral Biol 55(1): 52-59, 2010. https://doi.org/10.1016/j.archoralbio.2009.11.001.

    Article  CAS  PubMed  Google Scholar 

  52. Faot F, Chatterjee M, de Camargos GV, Duyck J, Vandamme K: Micro-CT analysis of the rodent jaw bone micro-architecture: A systematic review. Bone Rep 2: 14-24, 2015. https://doi.org/10.1016/j.bonr.2014.10.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Irie MS, Spin-Neto R, Borges JS, Wenzel A, Soares PBF: Effect of data binning and frame averaging for micro-CT image acquisition on the morphometric outcome of bone repair assessment. Sci Rep 26;12(1):1424, 2022. https://doi.org/10.1038/s41598-022-05459-6.

  54. Feldkamp LA, Davis LC, Kress J: Practical cone-beam algorithm. J Opt Soc Am 1(6):612–19, 1984.

    Article  Google Scholar 

  55. Clark DP, Badea CT: Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med 30(6):619-34, 2014. https://doi.org/10.1016/j.ejmp.2014.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Van Dessel J, Nicolielo LF, Huang Y, Coudyzer W, Salmon B, Lambrichts I, Jacobs R: Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT. Eur J Oral Implantol 10(1):95-105, 2017.

    PubMed  Google Scholar 

  57. Wang CX, Zeng L, Guo YM, Zhang LL: Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems and Imaging 11(6): 917–948, 2017.

    Article  Google Scholar 

  58. Wang CX, Zeng L. Error bounds and stability in the L0 regularized for CT reconstruction from small projections: Inverse Problems and Imaging 10(3): 829–853, 2016.

  59. Wu WW, Zhang YB, Wang Q, Liu FL, Chen PJ, Yu HY: Low-dose spectral CT reconstruction using image gradient ℓ0–norm and tensor dictionary. Applied Mathematical Modelling 63: 538–557, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yu HY, Wang G. Compressed sensing based interior tomography: Phys. Med. Biol 54(9): 2791–2805, 2009.

    Article  Google Scholar 

  61. Bansal M, Kumar M, Sachdeva M, Mittal A: Transfer learning for image classification using VGG19: Caltech-101 image data set. J Ambient Intell Humaniz Comput 17:1-12, 2021. https://doi.org/10.1007/s12652-021-03488-z.

    Article  Google Scholar 

  62. Kaur A, Kumar m, Jindal M.K: Shi-Tomasi corner detector for cattle identification from muzzle print image pattern. Ecol Informatics 68: 101549, 2022. https://doi.org/10.1016/j.ecoinf.2021.101549.

Download references

Acknowledgements

The authors are grateful to Rede de Biotérios de Roedores da Universidade Federal de Uberlândia, Centro de Pesquisa Odontológico-Biomecânica, Biomateriais e Biologia celular (CPBIO).

Funding

This study was supported by grants from the Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors deny any conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Contributions

PBFS, RSN, and JSB participated in the conception and study design. JSB and VCC performed the experiment. MSI and JSB contributed to the interpretation of the experimental results and statistical analysis. JSB, VCC, and MSI wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Priscilla Barbosa Ferreira Soares.

Ethics declarations

Ethics Approval

This study was approved by the Bioethics Committee for Animal Experimentation (#013/19) at Federal University of Uberlândia, Brazil, and conducted in accordance with the ARRIVE guidelines for preclinical studies and the normative guidelines of the National Council for Animal Control and Experimentation (CONCEA).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, J.S., Costa, V.C., Irie, M.S. et al. Definition of the Region of Interest for the Assessment of Alveolar Bone Repair Using Micro-computed Tomography. J Digit Imaging 36, 356–364 (2023). https://doi.org/10.1007/s10278-022-00693-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-022-00693-w

Keywords

Navigation